- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设双曲线
,正项数列
满足
,对任意的
,
,都有
是
上的点.
(1)求数列
的通项公式;
(2)记
,是否存在正整数
,使得
与
有相同的渐近线?如果有,求出
的值;如果没有,请说明理由.







(1)求数列

(2)记





数列{an}满足a1=3,an+1-2an=0,数列{bn}的通项公式满足关系式an·bn=(-1)n(n∈N*),则bn=________.
(1)已知A,B,C是△ABC的三个内角,且B是A,C的等差中项,求角B的大小.
(2)已知{an}为等差数列,其前三项为a,2a-1,3-a.求它的通项公式.
(2)已知{an}为等差数列,其前三项为a,2a-1,3-a.求它的通项公式.