- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- + 等差数列
- 等差数列及其通项公式
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
数列
令
表示集合
中元素个数.
(1)假设
1,3,5,7,9,那么
=____________________;
(2)假设
(
为常数
),那么
=____________________;




(1)假设


(2)假设




如图,下面的表格内的数值填写规则如下:先将第1行的所有空格填上1;再把一个首项为1,公比为
的数列
依次填入第一列的空格内;其它空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写
(1)设第2行的数依次为
,试用
表示
的值;
(2)设第3列的数依次为
,求证:对于任意非零实数
,
;
(3)能否找到
的值,使得(2)中的数列
的前
项
成为等比数列?若能找到,
的值有多少个?若不能找到,说明理由.


| 第1列 | 第2列 | 第3列 | … | 第![]() |
第1行 | 1 | 1 | 1 | … | 1 |
第2行 | ![]() | | | | |
第3行 | ![]() | | | | |
… | … | | | | |
第![]() | ![]() | | | | |
(1)设第2行的数依次为



(2)设第3列的数依次为



(3)能否找到





已知数列{an}是等差数列,从a1,a2,a3,a4,a5,a6,a7中取走任意四项,则剩下三项构成等差数列的概率为( )
A.![]() | B.![]() |
C.1或![]() | D.1或![]() |