- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- + 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:
,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列
为“斐波那契”数列,
为数列
的前
项和,则
(Ⅰ)
__________; (Ⅱ)若
,则
__________.(用
表示)





(Ⅰ)




已知数列{an}满足:a1=1,an+1=
(n∈N*).若bn+1=(n-2λ)
(n∈N*),b1=-
λ,且数列{bn}是单调递增数列,则实数λ的取值范围是()



A.λ<![]() | B.λ<1 | C.λ<![]() | D.λ<![]() |