- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等比数列{an}的前n项和为Sn,且a1+a3=30,2S2是3S1和S3的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足
,求数列{bn}前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足

长久以来,人们一直认为黄金分割比例是最美的,人们都不约而同的使用黄金分割,如果一个矩形的宽与长的比例是黄金比例
(
称为黄金分割比例),这样的矩形称为黄金矩形,黄金矩形有一个特点:如果在黄金矩形中不停分割出正方形,那么余下的部分也依然是黄金矩形,已知下图中最小正方形的边长为
,则矩形
的长为( )(结果保留两位小数)






A.![]() | B.![]() | C.![]() | D.![]() |
已知正项数列
的前n项和为
,若数列
是公差为
的等差数列,且
是
的等差中项.
(1)证明数列
是等比数列,并求数列
的通项公式;
(2)若
是数列
的前n项和,若
恒成立,求实数
的取值范围.






(1)证明数列


(2)若




已知等差数列
的前
项和为
,且
,
.
(1)若数列
中存在连续三项的和为54,求这三项的中间项对应的项数;
(2)若
,
,
成等比数列,求该数列的公比
.





(1)若数列

(2)若



