- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2,数列{an}满足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求数列{an}的通项公式;
(2)证明数列{
}为等差数列;
(3)设数列{cn}的通项公式为:Cn=
,其前n项和为Tn,求T2n.
(1)求数列{an}的通项公式;
(2)证明数列{

(3)设数列{cn}的通项公式为:Cn=

已知数列
,
满足:
.
(1)若
,求数列
的通项公式;
(2)若
,且
.
① 记
,求证:数列
为等差数列;
② 若数列
中任意一项的值均未在该数列中重复出现无数次,求首项
应满足的条件.



(1)若


(2)若


① 记


② 若数列

