- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于自然数数组
,如下定义该数组的极差:三个数的最大值与最小值的差.如果
的极差
,可实施如下操作
:若
中最大的数唯一,则把最大数减2,其余两个数各增加1;若
中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为
,其级差为
.若
,则继续对
实施操作
,…,实施
次操作后的结果记为
,其极差记为
.例如:
,
.
(1)若
,求
和
的值;
(2)已知
的极差为
且
,若
时,恒有
,求
的所有可能取值;
(3)若
是以4为公比的正整数等比数列中的任意三项,求证:存在
满足
.
















(1)若



(2)已知






(3)若



裴波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家列昂纳多·裴波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上裴波那契数列被以下递推方法定义:数列
满足:
,
,现从该数列的前40项中随机抽取一项,则能被3整除的概率是( )



A.![]() | B.![]() | C.![]() | D.![]() |
已知数列{an}满足:a1=1,
,记
.
(1)求b1,b2的值;
(2)证明:数列{bn}是等比数列;
(3)求数列{an}的通项公式.


(1)求b1,b2的值;
(2)证明:数列{bn}是等比数列;
(3)求数列{an}的通项公式.