- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- 平面向量的线性运算
- 平面向量的基本定理及坐标表示
- 平面向量的数量积
- + 平面向量的应用举例
- 向量在几何中的应用
- 向量在物理中的应用
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(Ⅰ)如图1,
是平面内的三个点,且
与
不重合,
是平面内任意一点,若点
在直线
上,试证明:存在实数
,使得:
.
(Ⅱ)如图2,设
为
的重心,
过
点且与
、
(或其延长线)分别交于
点,若
,
,试探究:
的值是否为定值,若为定值,求出这个
定值;若不是定值,请说明理由.









(Ⅱ)如图2,设










定值;若不是定值,请说明理由.


如图所示,等边△ABC的边长为2,D为AC中点,且△ADE也是等边三角形,在△ADE以点A为中心向下转动到稳定位置的过程中,
的取值范围是()



A.![]() | B.![]() | C.![]() | D.![]() |
如图,
是半径为5的圆
上的一个定点,单位向量
在
点处与圆
相切,点
是圆
上的一个动点,且点
与点
不重合,则
的取值范围是()














A.![]() | B.![]() | C.![]() | D.![]() |