甲船在点发现乙船在北偏东处,里,且乙船以每小时10里的速度向正北行驶,已知甲船的速度是每小时里,问:甲船以什么方向前进,才能与乙船最快相遇,相遇时甲船行驶了多少小时?
当前题号:1 | 题型:解答题 | 难度:0.99
去年某地的月平均气温与月份(月)近似地满足函数.(为常数,).其中三个月份的月平均气温如表所示,则该地2月份的月平均气温约为____________________________
.
当前题号:2 | 题型:填空题 | 难度:0.99
如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)
当前题号:3 | 题型:填空题 | 难度:0.99
如图所示,在直角中有一内接正方形,它的一条边在直角的斜边上,设

(1)用表示出的面积和正方形的面积
(2)当变化时,求的最小值.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,O是坐标原点,圆O的半径为1,点A(-1,0),B(1,0),点P,Q分别从点A,B同时出发,圆O上按逆时针方向运动.若点P的速度大小是点Q的两倍,则在点P运动一周的过程中,的最大值是_______.
当前题号:5 | 题型:填空题 | 难度:0.99
如图1,某小区中有条长为50米,宽为6.5米的道路ABCD,在路的一侧可以停放汽车,已知小型汽车的停车位是一个2.5米宽,5米长的矩形,如GHPQ,这样该段道路可以划岀10个车位,随着小区居民汽车拥有量的增加,停车难成为普遍现象.经过各方协商,小区物业拟压缩绿化,拓宽道路,改变车位方向增加停车位,如图2,改建后的通行宽度保持不变,即GAD的距离不变.

(1)绿化被压缩的宽度BE与停车位的角度∠HPE有关,记为停车方便,要求,写出关于的函数表达式
(2)沿用(1)的条件和记号,实际施工时,BE=3米,问改造后的停车位增加了多少个?
当前题号:6 | 题型:解答题 | 难度:0.99
如图所示,某城市有一条从正西方AO通过市中心O后向东北OB的公路,现要修一条地铁L,在OA,OB上各设一站A,B,地铁在AB部分为直线段,现要求市中心O与AB的距离为,设地铁在AB部分的总长度为
按下列要求建立关系式:
,将y表示成的函数;
用m,n表示y.
把A,B两站分别设在公路上离中心O多远处,才能使AB最短?并求出最短距离.
当前题号:7 | 题型:解答题 | 难度:0.99
如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形,由对称性,图中8个三角形都是全等的三角形,设.

(1)试用表示的面积;
(2)求八角形所覆盖面积的最大值,并指出此时的大小.
当前题号:8 | 题型:解答题 | 难度:0.99
如图,摩天轮上一点时刻距离地面高度满足,已知某摩天轮的半径为米,点距地面的高度为米,摩天轮做匀速转动,每分钟转一圈,点的起始位置在摩天轮的最低点处.

(1)根据条件写出(米)关于(分钟)的解析式;
(2)在摩天轮转动的一圈内,有多长时间点距离地面超过米?
当前题号:9 | 题型:解答题 | 难度:0.99
九章算术是我国古代著名数学经典其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示阴影部分为镶嵌在墙体内的部分已知弦尺,弓形高寸,估算该木材镶嵌在墙中的体积约为(  )(注:1丈寸,)
A.600立方寸B.610立方寸C.620立方寸D.633立方寸
当前题号:10 | 题型:单选题 | 难度:0.99