- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- + 三角函数的应用
- 几何中的三角函数模型
- 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
汕头市有一块如图所示的海岸,
,
为岸边,岸边形成
角,现拟在此海岸用围网建一个养殖场,现有以下两个方案:
方案l:在岸边
,
上分别取点
,
,用长度为
的围网依托岸边围成三角形
(
为围网).
方案2:在
的平分线上取一点
,再从岸边
,
上分别取点
,
,使得
,用长度为
的围网依托岸边围成四边形
(
,
为围网).
记三角形
的面积为
,四边形
的面积为
. 请分别计算
,
的最大值,并比较哪个方案好.



方案l:在岸边







方案2:在











记三角形







如图,有一块边长为
(百米)的正方形区域
.在点
处有一个可转动的探照灯,其照射角
始终为
(其中点
,
分别在边
,
上),设
(百米).

(1)用
表示出
的长度,并探求
的周长
是否为定值;
(2)设探照灯照射在正方形
内部区域的面积为
(平方百米),求S的最大值.











(1)用




(2)设探照灯照射在正方形


某实验室一天的温度(单位:
)随时间
(单位:
)的变化近似满足函数关系:
.
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于
,则在哪段时间实验室需要降温?




(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于

弹簧挂着的小球作上下运动,它在t秒时相对于平衡位置的高度h厘米由下列关系式确定:
.以t为横坐标,h为纵坐标,作出这个函数在一个周期的闭区间上的图象,并回答下列问题.

(1)小球在开始振动时(即
)的位置在哪里?
(2)小球的最高点和最低点与平衡位置的距离分别是多少?
(3)经过多少时间小球往复振动一次?
(4)每秒钟小球能往复振动多少次?


(1)小球在开始振动时(即

(2)小球的最高点和最低点与平衡位置的距离分别是多少?
(3)经过多少时间小球往复振动一次?
(4)每秒钟小球能往复振动多少次?
动点
在圆
上绕坐标原点作逆时针匀速圆周运动,旋转一周的时间恰好是12秒,已知时间
时,点
的坐标是
,则动点
的纵坐标
关于
(单位:秒)的函数在下列哪个区间上单调递增( )








A.![]() | B.![]() | C.![]() | D.![]() |
某生态农庄有一块如图所示的空地,其中半圆O的直径为300米,A为直径延长线上的点,
米,B为半圆上任意一点,以AB为一边作等腰直角
,其中BC为斜边.

若
;,求四边形OACB的面积;
现决定对四边形OACB区域地块进行开发,将
区域开发成垂钓中心,预计每平方米获利10元,将
区域开发成亲子采摘中心,预计每平方米获利20元,则当
为多大时,垂钓中心和亲子采摘中心获利之和最大?









请解答以下问题,要求解决两个问题的方法不同.
(1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形
,如何截取?并求出这个最大矩形的面积.

(2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形
,如何截取?并求出这个最大矩形的面积.
(1)如图1,要在一个半径为1米的半圆形铁板中截取一块面积最大的矩形


(2)如图2,要在一个长半轴为2米,短半轴为1米的半个椭圆铁板中截取一块面积最大的矩形


如图,半径为4m的水轮绕着圆心O逆时针做匀速圆周运动,每分钟转动4圈,水轮圆心O距离水面2m,如果当水轮上点P从离开水面的时刻(P0)开始计算时间.

(1)将点P距离水面的高度y(m)与时间t(s)满足的函数关系;
(2)求点P第一次到达最高点需要的时间.

(1)将点P距离水面的高度y(m)与时间t(s)满足的函数关系;
(2)求点P第一次到达最高点需要的时间.
某港口某天0时至24时的水深
(米)随时间
(时)变化曲线近似满足如下函数模型
(
).若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为( )




A.16时 | B.17时 | C.18时 | D.19时 |
如图,摩天轮的半径为50 m,点O距地面的高度为60 m,摩天轮做匀速转动,每3 min转一圈,摩天轮上点P的起始位置在最低点处.

(1)试确定在时刻t(min)时点P距离地面的高度;
(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?

(1)试确定在时刻t(min)时点P距离地面的高度;
(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85 m?