- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- + 三角函数的应用
- 几何中的三角函数模型
- 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,一个水轮的半径为
,水轮圆心
距离水面
,已知水轮每分钟转动
圈,如果当水轮上点
从水中浮现时(图中点
)开始计算时间。

(1)将点
距离水面的高度
表示为时间
的函数;
(2)点
第一次到达最高点大约需要多少时间?







(1)将点



(2)点

某巨型摩天轮.其旋转半径50米,最高点距地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第35分钟时他距地面大约为( )米.


A.75 | B.85 | C.100 | D.110 |
某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,
,在A地听到弹射声音的时间比在B地晚
秒.A地测得该仪器弹至最高点H时的仰角为30°.

(1)求A、C两地的距离;
(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)



(1)求A、C两地的距离;
(2)求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)
如图所示,
是临江公园内一个等腰三角形形状的小湖(假设湖岸是笔直的),其中两腰
米,
.为了给市民营造良好的休闲环境,公园管理处决定在湖岸
,
上分别取点
,
(异于线段端点),在湖上修建一条笔直的水上观光通道
(宽度不计),使得三角形
和四边形
的周长相等.

(1)若水上观光通道的端点
为线段
的三等分点(靠近点
),求此时水上观光通道
的长度;
(2)当
为多长时,观光通道
的长度最短?并求出其最短长度.











(1)若水上观光通道的端点




(2)当


如图所示,为美化环境,拟在四边形
空地上修建两条道路
和
,将四边形分成三个区域,种植不同品种的花草,其中点
在边
的三等分处(靠近
点),
百米,
,
,
百米,
.
(1)求
区域的面积;
(2)为便于花草种植,现拟过
点铺设一条水管
至道路
上,求当水管
最短时的长.











(1)求

(2)为便于花草种植,现拟过





将边长为
的正三角形
按如图所示的方式放置,其中顶点
与坐标原点重合.记
,已知
.

(Ⅰ)试用
表示
的坐标(要求将结果化简为形如
的形式);
(Ⅱ)对于直角坐标平面内的任意两点
、
,定义
,试求
的最大值.






(Ⅰ)试用



(Ⅱ)对于直角坐标平面内的任意两点




如图,
三个警亭有直道相通,已知
在
的正北方向6千米处,
在
的正东方向
千米处.
(1)警员甲从
出发,沿
行至点
处,此时
,求
的距离;
(2)警员甲从
出发沿
前往
,警员乙从
出发沿
前往
,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达
后原地等待,直到甲到达
时任务结束.若对讲机的有效通话距离不超过9千米,试问两人通过对讲机能保持联系的总时长?






(1)警员甲从





(2)警员甲从









平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深
(米)是随着一天的时间
(
,单位小时)呈周期性变化,某天各时刻
的水深数据的近似值如下表:

(1)根据表中近似数据画出散点图(坐标系在答题卷中),观察散点图,选择一个合适的函数模型,并求 出该拟合模型的函数解析式;
(2)为保证队员安全,规定在一天中的
时且水深不低于1.05米的时候进行训练,根据(1)中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全.





(1)根据表中近似数据画出散点图(坐标系在答题卷中),观察散点图,选择一个合适的函数模型,并求 出该拟合模型的函数解析式;
(2)为保证队员安全,规定在一天中的
