某住宅小区为了使居民有一个优雅舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCDEFGH构成的面积为200平方米的十字型地域.现计划在正方形MNPQ上建花坛,造价为4200元/平方米,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/平方米,再在四个空角上铺草坪,造价为80元/平方米.

(1)设总造价为S元,AD的边长为x米,DQ的边长为y米,试建立S关于x的函数关系式;
(2)计划至少要投入多少元,才能建造这个休闲小区.
当前题号:1 | 题型:解答题 | 难度:0.99
一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,米,如图所示.小球从A点出发以5 V的速度沿半圆O轨道滚到某点E处后,经弹射器以6 V的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F.设弧度,小球从AF所需时间为T

(1)试将T表示为的函数,并写出定义域;
(2)当满足什么条件时,时间T最短.
当前题号:2 | 题型:解答题 | 难度:0.99
如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1l2接通.已知AB = 60mBC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设EFAB所成的角为α,矩形区域内的铺设水管的总费用为W

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α
当前题号:3 | 题型:解答题 | 难度:0.99
某工程队共有500人,要建造一段6000米的高速公路,工程需要把500人分成两组,甲组的任务是完成一段4000米的软土地带,乙组的任务是完成剩下的2000米的硬土地带,据测算,软、硬土地每米的工程量是30工(工为计量单位)和40工.
(1)若平均分配两组的人数,分别计算两组完工的时间,并求出此时全队的筑路工期;
(2)如何分配两组的人数会使得全队的筑路工期最短?
当前题号:4 | 题型:解答题 | 难度:0.99
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
当前题号:5 | 题型:解答题 | 难度:0.99
如图,某大型水上乐园内有一块矩形场地米, 米,以为直径的半圆和半圆(半圆在矩形内部)为两个半圆形水上主题乐园, 都建有围墙,游客只能从线段处进出该主题乐园.为了进一步提高经济效益,水上乐园管理部门决定沿着修建不锈钢护栏,沿着线段修建该主题乐园大门并设置检票口,其中分别为上的动点, ,且线段与线段在圆心连线的同侧.已知弧线部分的修建费用为元/米,直线部门的平均修建费用为元/米.

(1)若米,则检票等候区域(其中阴影部分)面积为多少平方米?
(2)试确定点的位置,使得修建费用最低.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,PQ为某公园的一条道路,一半径为20米的圆形观赏鱼塘与PQ相切,记其圆心为O,切点为
A.为参观方便,现新修建两条道路CA、CB,分别与圆O相切于D、E两点,同时与PQ分别交于A、B两点,其中C、O、G三点共线且满足CA=CB,记道路CA、CB长之和为
(1)①设∠ACO=,求出关于的函数关系式;②设AB=2x米,求出关于x的函数关系式
(2)若新建道路每米造价一定,请选择(1)中的一个函数关系式,研究并确定如何设计使得新建道路造价最少.
当前题号:7 | 题型:解答题 | 难度:0.99
甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比、比例系数为b;固定部分为a元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
当前题号:8 | 题型:解答题 | 难度:0.99
某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型.

(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式,并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
当前题号:9 | 题型:解答题 | 难度:0.99
某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个实心圆柱体和一个实心半球体组成,要求半球的半径和圆柱的底面半径之比为,工艺品的体积为。现设圆柱的底面半径为,工艺品的表面积为,半球与圆柱的接触面积忽略不计。

(1)试写出关于的函数关系式并求出的取值范围;
(2)怎样设计才能使工艺品的表面积最小?并求出最小值。
参考公式:球体积公式:;球表面积公式:,其中为球半径.
当前题号:10 | 题型:解答题 | 难度:0.99