刷题首页
题库
高中数学
题干
如图,有一块半圆形空地,开发商计划建造一个矩形游泳池
及左右两侧两个大小相同的矩形休息区,其中半圆的圆心为
,半径为
,矩形
的一边
在
上,矩形
的一边
在
上,点
在圆周上,
在直径上,且
,设
.若每平方米游泳池的造价与休息区造价之比为
.
(1)记游泳池及休息区的总造价为
,求
的表达式;
(2)为进行投资预算,当
为何值时,总造价最大?并求出总造价的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-21 04:51:32
答案(点此获取答案解析)
同类题1
某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计).易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
.假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元/
,易拉罐上下底面的制造费用均为
元/
(
,
为常数,且
).
(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.
同类题2
如图,某公园内有一块矩形绿地区域ABCD,已知AB=100米,BC=80米,以AD,BC为直径的两个半圆内种植花草,其它区域种值苗木. 现决定在绿地区域内修建由直路BN,MN和弧形路MD三部分组成的观赏道路,其中直路MN与绿地区域边界AB平行,直路为水泥路面,其工程造价为每米2a元,弧形路为鹅卵石路面,其工程造价为每米3a元,修建的总造价为W元. 设
.
(1)求W关于
的函数关系式;
(2)如何修建道路,可使修建的总造价最少?并求最少总造价.
同类题3
如图是一个半圆形湖面景点的平面示意图.已知
为直径,且
km,
为圆心,
为圆周上靠近
的一点,
为圆周上靠近
的一点,且
∥
.现在准备从
经过
到
建造一条观光路线,其中
到
是圆弧
,
到
是线段
.设
,观光路线总长为
.
(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
同类题4
如图所示,有
、
、
三座城市,
城在
城的正西方向,且两座城市之间的距离为
;
城在
城的正北方向,且两座城市之间的距离为
.由
城到
城只有一条公路
,甲有急事要从
城赶到
城,现甲先从
城沿公路
步行到点
(不包括
、
两点)处,然后从点
处开始沿山路
赶往
城.若甲在公路上步行速度为每小时
,在山路上步行速度为每小时
,设
(单位:弧度),甲从
城赶往
城所花的时间为
(单位:
).
(1)求函数
的表达式,并求函数的定义域;
(2)当点
在公路
上何处时,甲从
城到达
城所花的时间最少,并求所花的最少的时间的值.
同类题5
已知铁道机车运行1小时所需成本由两部分组成,固定部分为
元,变动部分与运行速度
(单位:千米/小时)的平方成正比,比例系数为
.如果机车匀速从甲站开往乙站,则当机车以______千米/小时的速度运行时,成本最省.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题