刷题首页
题库
高中数学
题干
在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高
( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-02-06 11:52:46
答案(点此获取答案解析)
同类题1
如图,一个角形海湾AOB,∠AOB=2θ(常数θ为锐角).拟用长度为l(l为常数)的围网围成一个养殖区,有以下两种方案可供选择:
方案一 如图1,围成扇形养殖区OPQ,其中
=l;
方案二 如图2,围成三角形养殖区OCD,其中CD=l;
(1)求方案一中养殖区的面积S
1
;
(2)求证:方案二中养殖区的最大面积S
2
=
;
(3)为使养殖区的面积最大,应选择何种方案?并说明理由.
同类题2
已知正四棱锥的侧棱长为
,那么当该棱锥体积最大时,它的高为( )
A.1
B.
C.2
D.3
同类题3
如图,某城市有一块半径为
的半圆形绿化区域(以
为圆心,
为直径),现对其进行改建,在
的延长线上取点
,
,在半圆上选定一点
,改建后绿化区域由扇形区域
和三角形区域
组成,其面积为
.设
.
(1)写出
关于
的函数关系式
,并指出
的取值范围;
(2)试问
多大时,改建后的绿化区域面积
取得最大值.
同类题4
用长为18米的篱笆借助一墙角围成一个矩形
(如图所示),在点
处有一棵树(忽略树的直径)距两墙的距离分别为
米和
米,现需要将此树圈进去,设矩形
的面积为
(平方米),长
为
(米).
(1)设
,求
的解析式并指出其定义域;
(2)试求
的最小值
.
同类题5
如图,现在要在一块半径为1
m
.圆心角为60°的扇形纸板
AOB
上剪出一个平行四边形
MNPQ
,使点
P
在
AB
弧上,点
Q
在
OA
上,点
M
,
N
在
OB
上,设∠
BOP
=
θ
,Y
MNPQ
的面积为
S
.
(1)求
S
关于
θ
的函数关系式;
(2)求
S
的最大值及相应
θ
的值
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
锥体体积的有关计算