如图,曲线是一条居民平时散步的小道,小道两旁是空地,当地政府为了丰富居民的业余生活,要在小道两旁规划出两地来修建休闲活动场所,已知空地和规划的两块用地(阴影区域)都是矩形,,若以所在直线为轴,为原点,建立如图平面直角坐标系,则曲线的方程为,记,规划的两块用地的面积之和为.(单位:)

(1)求关于的函数
(2)求的最大值.
当前题号:1 | 题型:解答题 | 难度:0.99
用长为18米的篱笆借助一墙角围成一个矩形(如图所示),在点处有一棵树(忽略树的直径)距两墙的距离分别为米和米,现需要将此树圈进去,设矩形的面积为(平方米),长(米).

(1)设,求的解析式并指出其定义域;
(2)试求的最小值
当前题号:2 | 题型:解答题 | 难度:0.99
某农场灌溉水渠长为1000m,横截面是等腰梯形ABCD(如图),,其中渠底BC宽为1m,渠口AD宽为3m,渠深.根据国家对农田建设补贴的政策,该农场计划在原水渠的基础上分别沿AD方向加宽、AB方向加深,若扩建后的水渠横截面仍是等腰梯形,且面积是原面积的2倍.设扩建后渠深为hm,若挖掘费为ah2元/m3,扩建后的水渠的内壁AB1C1D1和渠底B1C1铺设混凝土费为3a元/m2.

(1)试用h表示渠底B1C1的宽,并确定h的取值范围; 
(2)问:渠深h为多少时,可使总建设费最少?
(注:总建设费为挖掘费与铺设混凝土费之和)
当前题号:3 | 题型:解答题 | 难度:0.99
如图,是正方形空地,边长为,电源在点P处,点P到边距离分别为.某广告公司计划在此空地上竖一块长方形液晶广告屏幕,线段必须过点P,端点在边上,端点在正方形的边上,设,液晶广告屏幕的面积为

(1)用的代数式表示AM;
(2) 求关于的函数关系式;
(3)当取何值时,液晶广告屏幕的面积最小?
当前题号:4 | 题型:解答题 | 难度:0.99
如图所示的某种容器的体积为,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为.圆锥的高为,母线与底面所成的角为;圆柱的高为.已知圆柱底面造价为,圆柱侧面造价为,圆锥侧面造价为.

(1)将圆柱的高表示为底面圆半径的函数,并求出定义域;
(2)当容器造价最低时,圆柱的底面圆半径为多少?
当前题号:5 | 题型:解答题 | 难度:0.99
如图,是一张长、宽的长方形的纸片,现将纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为,().其中点在面积为的部分内,记折痕长为.

(1)若,求的最大值;
(2)若,求的取值范围.
当前题号:6 | 题型:解答题 | 难度:0.99
如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中EF在边上,GH在圆弧上.设,矩形的面积为S.

(1)求矩形的面积S关于变量的函数关系式;
(2)求为何值时,矩形的面积S最大?
当前题号:7 | 题型:解答题 | 难度:0.99
如图,某机械厂要将长,宽的长方形铁皮进行裁剪.已知点的中点,点在边上,裁剪时先将四边形沿直线翻折到处(点分别落在直线下方点处,交边于点),再沿直线裁剪.

(1)当时,试判断四边形的形状,并求其面积;
(2)若使裁剪得到的四边形面积最大,请给出裁剪方案,并说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
某种水箱用的“浮球”是由两个相同半球和一个圆柱筒组成,它的轴截面如图所示,已知半球的直径是,圆柱筒高,为增强该“浮球”的牢固性,给“浮球”内置一“双蝶形”防压卡,防压卡由金属材料杆,,,,,焊接而成,其中,分别是圆柱上下底面的圆心,均在“浮球”的内壁上,ACBD通过“浮球”中心,且均与圆柱的底面垂直.

(1)设与圆柱底面所成的角为,试用表示出防压卡中四边形的面积,并写出的取值范围;
(2)研究表明,四边形的面积越大,“浮球”防压性越强,求四边形面积取最大值时,点到圆柱上底面的距离
当前题号:9 | 题型:解答题 | 难度:0.99
如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为为圆上点,分别是以为底边的等腰三角形,沿虚线剪开后,分别以为折痕折起,使得重合,得到四棱锥.当该四棱锥体积取得最大值时,正方形的边长为______.
当前题号:10 | 题型:填空题 | 难度:0.99