- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
在交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离d(米)与车速v(千米/小时)需遵循的关系是d≥
(其中a(米)是车身长,a为常量),同时规定d≥
.
(1)当d=
时,求机动车车速的变化范围;
(2)设机动车每小时流量Q=
,应规定怎样的车速,使机动车每小时流量Q最大.
在交通拥挤地段,为了确保交通安全,规定机动车相互之间的距离d(米)与车速v(千米/小时)需遵循的关系是d≥


(1)当d=

(2)设机动车每小时流量Q=

(本小题满分12分)已知函数
,若存在
恒成立,则称
的一个“下界函数”.
(I)如果函数
的一个“下界函数”,求实数t的取值范围;
(II)设函数
,试问函数F(x)是否存在零点?若存在,求出零点个数;若不存在,请说明理由.



(I)如果函数

(II)设函数

(本小题满分14分)已知函数
,其中
为自然对数的底数.
(Ⅰ)当
时,求曲线
在
处的切线与坐标轴围成的面积;
(Ⅱ)若函数
存在一个极大值点和一个极小值点,且极大值与极小值的积为
,求
的值.


(Ⅰ)当



(Ⅱ)若函数


