- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=ex(其中e为自然对数的底数),g(x)=
x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣
,求T(x)在[0,1]上的最大值;
(2)若m=﹣
,n∈N*,求使f(x)的图象恒在g(x)图象上方的最大正整数n.[注意:7<e2<
].

(1)若T(x)=f(x)g(x),m=1﹣

(2)若m=﹣


定义在(﹣1,+∞)上的单调函数f(x),对于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,则方程f(x)﹣f′(x)=x的解所在的区间是( )
A.(﹣1,﹣![]() | B.(0,![]() | C.(﹣![]() | D.(![]() |
已知函数
,
.
(Ⅰ)当a=2时,求(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);
(Ⅱ)若
,有f(x)+g(x)≤0恒成立,求实数a的值;


(Ⅰ)当a=2时,求(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);
(Ⅱ)若
