- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知a,b为常数,且a≠0,函数f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[
,e])都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.
(I)求实数b的值;
(II)求函数f(x)的单调区间;
(III)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=f(x)(x∈[

有下列命题:
①x=0是函数f(x)=x3的极值点;
②函数f(x)=ax3+bx2+cx+d(a≠0)有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(-4,4)上单调递减.
其中假命题的序号是____.
①x=0是函数f(x)=x3的极值点;
②函数f(x)=ax3+bx2+cx+d(a≠0)有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(-4,4)上单调递减.
其中假命题的序号是____.
已知正四棱锥
的底面边长和高均为3,
,
分别是棱
,
上一点,且满足
,
,过
做平面与线段
,
分别交于
,
,则四棱锥
的体积的最小值为__________.












