- 集合与常用逻辑用语
- 函数与导数
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- + 函数(导函数)图象与极值的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的图象如图所示(其中
是定义域为
的函数
的导函数),则以下说法错误的是()






A.![]() |
B.当![]() ![]() |
C.方程![]() ![]() |
D.当![]() ![]() |
已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是( )
①f(b)>f(a)>f(c);
②函数f(x)在x=c处取得极小值,在x=e处取得极大值;
③函数f(x)在x=c处取得极大值,在x=e处取得极小值;
④函数f(x)的最小值为f(d).

①f(b)>f(a)>f(c);
②函数f(x)在x=c处取得极小值,在x=e处取得极大值;
③函数f(x)在x=c处取得极大值,在x=e处取得极小值;
④函数f(x)的最小值为f(d).

A.③ | B.①② | C.③④ | D.④ |
函数
的图像如图所示,则下列结论成立的是( )

A.a>0,b<0,c>0,d>0 |
B.a>0,b<0,c<0,d>0 |
C.a<0,b<0,c<0,d>0 |
D.a>0,b>0,c>0,d<0 |
已知函数f(x)=lnx,h(x)=ax(a为实数)
(1)函数f(x)的图象与h(x)的图象没有公共点,求实数a的取值范围
(2)是否存在实数m,使得对任意的
都有函数
的图象在函数
图象的下方?若存在,请求出整数m的最大值;若不存在,说明理由(
)
(1)函数f(x)的图象与h(x)的图象没有公共点,求实数a的取值范围
(2)是否存在实数m,使得对任意的



