- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)求函数
的极值;
(2)对于曲线上的不同两点
,如果存在曲线上的点
,且
使得曲线在点
处的切线
,则称
为弦
的伴随直线,特别地,当
时,又称
为
的
—伴随直线.
①求证:曲线
的任意一条弦均有伴随直线,并且伴随直线是唯一的;
②是否存在曲线
,使得曲线
的任意一条弦均有
—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

(1)求函数

(2)对于曲线上的不同两点











①求证:曲线

②是否存在曲线



已知函数
,a,b为常数.
(1)若函数f(x)在x=1处有极值10,求实数a,b的值;
(2)若a=0,
(I)方程f(x)=2在x∈[﹣4,4]上恰有3个不相等的实数解,求实数b的取值范围;
(II)不等式f(x)+2b≥0对∀x∈[1,4]恒成立,求实数b的取值范围.


(1)若函数f(x)在x=1处有极值10,求实数a,b的值;
(2)若a=0,
(I)方程f(x)=2在x∈[﹣4,4]上恰有3个不相等的实数解,求实数b的取值范围;
(II)不等式f(x)+2b≥0对∀x∈[1,4]恒成立,求实数b的取值范围.