- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是( )
①f(b)>f(a)>f(c);
②函数f(x)在x=c处取得极小值,在x=e处取得极大值;
③函数f(x)在x=c处取得极大值,在x=e处取得极小值;
④函数f(x)的最小值为f(d).

①f(b)>f(a)>f(c);
②函数f(x)在x=c处取得极小值,在x=e处取得极大值;
③函数f(x)在x=c处取得极大值,在x=e处取得极小值;
④函数f(x)的最小值为f(d).

A.③ | B.①② | C.③④ | D.④ |
函数
的图像如图所示,则下列结论成立的是( )

A.a>0,b<0,c>0,d>0 |
B.a>0,b<0,c<0,d>0 |
C.a<0,b<0,c<0,d>0 |
D.a>0,b>0,c>0,d<0 |
已知a为实数,函数f(x)=aln x+x2-4x.
(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;
(2)设g(x)=(a-2)x,若∃x0∈
,使得f(x0)≤g(x0)成立,求实数a的取值范围.
(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;
(2)设g(x)=(a-2)x,若∃x0∈
