- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知e是自然对数的底数,f(x)=mex,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)-g(x-2)-2 017.
(1)设m=1,求h(x)的极值;
(2)设m<-e2,求证:函数φ(x)没有零点;
(3)若m≠0,x>0,设F(x)=
+
,求证:F(x)>3.
(1)设m=1,求h(x)的极值;
(2)设m<-e2,求证:函数φ(x)没有零点;
(3)若m≠0,x>0,设F(x)=


已知函数
,其中a∈R.
(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)在(1)的结论下,若关于x的不等式
,当x≥1时恒成立,
求t的值.

(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)在(1)的结论下,若关于x的不等式

求t的值.
已知函数f(x)=xln x-aex(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )
A.![]() | B.(0,e) |
C.![]() | D.(-∞,e) |