- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- + 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知命题
:函数
在
上是增函数;命题
:若函数
在区间[0,+∞)没有零点.
(1)如果命题
为真命题,求实数
的取值范围;
(2)命题“
”为真命题,“
”为假命题,求实数
的取值范围.





(1)如果命题


(2)命题“



设函数
(1)当
时,求函数
的单调区间;
(2)令
,其图象上任意一点
处切线的斜率
恒成立,求实数
的取值范围.
(3)当
时,方程
在区间
内有唯一实数解,求实数
的取值范围.

(1)当


(2)令




(3)当




知函数f(x)=ax2﹣2x+lnx(a≠0,a∈R).
(1)判断函数 f (x)的单调性;
(2)若函数 f (x)有两个极值点x1,x2,求证:f(x1)+f(x2)<﹣3.
(1)判断函数 f (x)的单调性;
(2)若函数 f (x)有两个极值点x1,x2,求证:f(x1)+f(x2)<﹣3.