- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- + 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果函数y=f(x)在区间I上是增函数,且函数
在区间I上是减函数,那么称函数y=f(x)是区间I上的“缓增函数”,区间I叫做“缓增区间”.若函数
是区间I上的“缓增函数”,则“缓增区间”I为( )


A.[1,+∞) | B.[0,![]() |
C.[0,1] | D.[1,![]() |
已知函数f(x)
x2﹣xlnx,g(x)=(m﹣x)lnx+(1﹣m)x(m<0).
(1)讨论函数f′(x)的单调性;
(2)求函数F(x)=f(x)﹣g(x)在区间[1,+∞)上的最小值.

(1)讨论函数f′(x)的单调性;
(2)求函数F(x)=f(x)﹣g(x)在区间[1,+∞)上的最小值.
设函数
.
(1)若
求函数
的单调区间;
(2)若
试判断函数
在区间
内的极值点的个数,并说明理由;
(3)求证:对任意的正数a都存在实数t满足:对任意的
,
.


(1)若


(2)若



(3)求证:对任意的正数a都存在实数t满足:对任意的

