- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- + 利用导数求函数的单调区间
- 由函数的单调区间求参数
- 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
,其图象在点
处切线的斜率为-3.
(1)求
与
关系式;
(2)求函数
的单调区间(用只含有
的式子表示);
(3)当
时,令
,设
是函数
的两个零点,
是
与
的等差中项,求证:
(
为函数
的导函数).


(1)求


(2)求函数


(3)当










已知函数f(x)=2ex+3x2-2x+1+b,x∈R的图象在x=0处的切线方程为y=ax+2.
(1)求函数f(x)的单调区间与极值;
(2)若存在实数x,使得f(x)-2x2-3x-2-2k≤0成立,求整数k的最小值.
(1)求函数f(x)的单调区间与极值;
(2)若存在实数x,使得f(x)-2x2-3x-2-2k≤0成立,求整数k的最小值.