- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x﹣
﹣(a+2)lnx,其中实数a≥0.
(1)若a=0,求函数f(x)在x∈[1,3]上的最值;
(2)若a>0,讨论函数f(x)的单调性.

(1)若a=0,求函数f(x)在x∈[1,3]上的最值;
(2)若a>0,讨论函数f(x)的单调性.
函数
图象上不同两点
,
处的切线的斜率分别是
,
,规定
(
为线段
的长度)叫做曲线
在点
与点
之间的“弯曲度”.设曲线
上不同两点
,
,且
,则
的取值范围是__________.
















已知函数f(x)=lnx+(e﹣a)x﹣2b,其中e为自然对数的底数.若不等式f(x)≤0对x∈(0,+∞)恒成立,则
的最小值等于___

已知函数
,
,
为实数,
,
为自然对数的底数,
.
(1)当
,
时,设函数
的最小值为
,求
的最大值;
(2)若关于
的方程
在区间
上有两个不同实数解,求
的取值范围.






(1)当





(2)若关于



