- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
(
为自然对数的底数).
(1)若函数
的图象在
处的切线方程为
,求
,
的值;
(2)若
时,函数
在
内是增函数,求
的取值范围;
(3)当
时,设函数
的图象
与函数
的图象
交于点
、
,过线段
的中点
作
轴的垂线分别交
、
于点
、
,问是否存在点
,使
在
处的切线与
在
处的切线平行?若存在,求出
的横坐标;若不存在,请说明理由.



(1)若函数





(2)若




(3)当




















设函数
在区间
上的导函数为
,
在区间
上的导函数为
,若在区间
上
,则称函数
在区间
上为“凹函数”,已知
在区间
上为“凹函数”,则实数
的取值范围为( )













A.![]() | B.![]() | C.![]() | D.![]() |