- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为
且满足
,当
时,
.
(1)判断
在
上的单调性并加以证明;
(2)若方程
有实数根
,则称
为函数
的一个不动点,设正数
为函数
的一个不动点,且
,求
的取值范围.





(1)判断


(2)若方程








已知函数f (x)=ex-ax-1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2-e)x.
①求函数h(x)=f (x)-g (x)的单调区间;
②若函数
的值域为R,求实数m的取值范围;
(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求证:e-1≤a≤e2-e.
(1)若a=e,函数g (x)=(2-e)x.
①求函数h(x)=f (x)-g (x)的单调区间;
②若函数

(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求证:e-1≤a≤e2-e.
已知
,
,其中
是自然常数,
.
(1)当
时,求
的极值,并证明
恒成立;
(2)是否存在实数
,使
的最小值为
?若存在,求出
的值;若不存在,请说明理由.




(1)当



(2)是否存在实数



