- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(其中
为自然对数的底数)
(1)设过点
的直线
与曲线
相切于点
,求
的值;
(2)若函数
的图象与函数
的图象在
内有交点,求实数
的取值范围.


(1)设过点





(2)若函数




我们常用函数y=f(x)的函数值的改变量与自变量的改变量的比值来表示平均变化率,当自变量x由x0改变到x+x0时,函数值的改变量△y等于( )
A.f(x0+△x) | B.f(x0)+△x |
C.f(x0)•△x | D.f(x0+△x)﹣f(x0) |
已知函数
(其中
为自然对数的底数)
(1)设过点
的直线
与曲线
相切于点
,求
的值;
(2)函数
的的导函数为
,若
在
上恰有两个零点,求
的取值范围.


(1)设过点





(2)函数




