- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=x2+2alnx.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(2)若函数
在[1,2]上是减函数,求实数a的取值范围.
(1)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(2)若函数

已知命题
,函数
的值大于
.若
是真命题,则命题
可以是()






A.![]() ![]() |
B.“![]() ![]() ![]() |
C.![]() ![]() |
D.若![]() ![]() ![]() |