- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若在曲线
上两个不同点处的切线重合,则称这条切线为曲线
的“自公切线”.下列方程:①
;②
;③
;④
对应的曲线中存在“自公切线”的有( )






A.①② | B.②③ | C.①④ | D.③④ |
已知函数
,
(
为常数).
(1)函数
的图象在点
处的切线与函数
的图象相切,求实数
的值;
(2)若函数
在定义域上存在单调减区间,求实数
的取值范围;
(3)若
,
,且
,都有
成立,求实数
的取值范围.



(1)函数




(2)若函数


(3)若




