- 集合与常用逻辑用语
- 函数与导数
- 利用给定函数模型解决实际问题
- + 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司生产甲、乙两种产品所得利润分别为
和
(万元),它们与投入资金(万元)的关系有经验公式
,
.今将120万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额都不低于20万元.
(Ⅰ)设对乙产品投入资金
万元,求总利润
(万元)关于
的函数关系式及其定义域;
(Ⅱ)如何分配使用资金,才能使所得总利润最大?最大利润为多少?




(Ⅰ)设对乙产品投入资金



(Ⅱ)如何分配使用资金,才能使所得总利润最大?最大利润为多少?
安徽怀远石榴(Punicagranatum)自古就有“九州之奇树,天下之名果”的美称,今年又喜获丰收.怀远一中数学兴趣小组进行社会调查,了解到某石榴合作社为了实现
万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过
万元时,按销售利润进行奖励,且奖金
(单位:万元)随销售利润
(单位:万元)的增加而增加,但奖金总数不超过
万元,同时奖金不能超过利润的
.同学们利用函数知识,设计了如下函数模型,其中符合合作社要求的是( )(参考数据:
)







A.![]() | B.![]() | C.![]() | D.![]() |
“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度
(单位:千克/年)是养殖密度
(单位:尾/立方米)的函数.当
时,
的值为2千克/年;当
时,
是
的一次函数;当
时,因缺氧等原因,
的值为0千克/年.
(1)当
时,求
关于
的函数表达式.
(2)当养殖密度
为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.









(1)当



(2)当养殖密度

如图,
为信号源点,
、
、
是三个居民区,已知
、
都在
的正东方向上,
,
,
在
的北偏西45°方向上,
,现要经过点
铺设一条总光缆直线
(
在直线
的上方),并从
、
、
分别铺设三条最短分支光缆连接到总光缆
,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/
,设
,(
),铺设三条分支光缆的总费用为
(元).

(1)求
关于
的函数表达式;
(2)求
的最小值及此时
的值.

























(1)求


(2)求











A.![]() | B.![]() |
C.![]() | D.![]() |
国家规定某行业征税如下:年收入在280万元及以下的税率为p%,超过280万元的部分按
征税.有一公司的实际缴税比例为
,则该公司的年收入是( )


A.560万元 | B.420万元 | C.350万元 | D.320万元 |
现测得(x,y)的两组对应值分别为(1,2),(2,5),现有两个待选模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为函数模型.
牧场中羊群的最大畜养量为m只,为保证羊群的生长空间,实际畜养量不能达到最大畜养量,必须留出适当的空闲量,已知羊群的年增长量y(只)和实际畜养量x(只)与空闲率的乘积成正比,比例系数为
.
(1)写出y关于x的函数解析式,并指出这个函数的定义域;
(2)求羊群年增长量的最大值.

(1)写出y关于x的函数解析式,并指出这个函数的定义域;
(2)求羊群年增长量的最大值.
如图,两铁路线垂直相交于站
,若已知
千米,甲火车从
站出发,沿
方向以
千米
小时的速度行驶,同时乙火车从
站出发,沿
方向,以
千米
小时的速度行驶,至
站即停止前行(甲车扔继续行驶)(两车的车长忽略不计).

(1)求甲、乙两车的最近距离(用含
的式子表示);
(2)若甲、乙两车开始行驶到甲,乙两车相距最近时所用时间为
小时,问
为何值时
最大?












(1)求甲、乙两车的最近距离(用含

(2)若甲、乙两车开始行驶到甲,乙两车相距最近时所用时间为


