某抛物线型拱桥水面宽度20m,拱顶离水面4m,现有一船宽9m,船在水面上高3m
(1)建立适当平面直角坐标系,求拱桥所在抛物线标准方程;
(2)计算这条船能否从桥下通过.
当前题号:1 | 题型:解答题 | 难度:0.99
为了实现绿色发展,避免浪费能源,某市政府计划对居民用电实行阶梯收费的方法.为此,相关部门随机调查了20户居民六月分的月用电量(单位:kwh)和家庭月收入(单位:方元)月用电量数据如下18,63,72,82,93,98,106,10,18,130,134,139,147,163,180,194,212,237,260,324家庭月收入数据如下0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8
(1)根据国家发改委的指示精神,该市实行3阶阶梯电价,使7%的用户在第一档,电价为0.56元/kwh,20%的用户在第二档,电价为0.61元/kwh,5%的用户在第三档,电价为0.86元/kwh,试求出居民用电费用Q与用电量x间的函数关系式;
(2)以家庭月收入t为横坐标,电量x为纵坐标作出散点图(如图)求出x关于t的回归直线方程(系数四舍五入保留整数);

(3)小明家庭月收入7000元,按上述关系,估计小明家月支出电费多少元?
当前题号:2 | 题型:解答题 | 难度:0.99
某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别用表示的函数关系式,并给出定义域;
(2)怎样设计能使取得最大值,并求出最大值.
当前题号:3 | 题型:解答题 | 难度:0.99
要建造一个容积为,深为6m的长方体无盖蓄水池,池壁的造价为95元/,池底的造价为135元/,如何设计水池的长与宽,才能使水池的总造价控制在7万元以内(精确到0.1 m)?
当前题号:4 | 题型:解答题 | 难度:0.99
如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从孔流入,经沉淀后从孔流出,设箱体的长度为米,高度为米,已知流出的水中该杂质的质量分数与的乘积成反比,现有制箱材料60平方米;

(1)写出关于的表达式;
(2)当各为多少米时,经沉淀后流出的水中该杂质质量分数最小;(孔的面积忽略不计)
当前题号:5 | 题型:解答题 | 难度:0.99
的展开式的各项系数之和,表示不超过实数x的最大整数),则的最小值为_____
当前题号:6 | 题型:填空题 | 难度:0.99
海水受日月的引力在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下表是某港口某天的时刻与水深关系的预报.
时刻
水深/m
时刻
水深/m
时刻
水深/m
0:00
5.0
9:18
2.5
18:36
5.0
3:06
7.5
12:24
5.0
21:42
2.5
6:12
5.0
15:30
7.5
24:00
4.0
 
(1)选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值(精确到0.001 m).
(2)一条货船的吃水深度(船底与水面的距离)为4 m,安全条例规定至少要有1.5 m的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?
(3)某船的吃水深度为4 m,安全间隙为1.5 m该船这一天在2:00开始卸货,吃水深度以0.3 m/h的速度减少,如果这条船停止卸货后需0.4 h才能驶到深水域,那么该船最好在什么时间停止卸货,将船驶向较深的水域?
当前题号:7 | 题型:解答题 | 难度:0.99
如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5 m.
(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;

(2)若行车道总宽度AB为7 m,请计算通过隧道的车辆限制高度为多少米(精确到0.1 m)?
当前题号:8 | 题型:解答题 | 难度:0.99
某工厂拟建一个平面图形为矩形,且总面积为400平方米的三级污水处理池,如图R3-1所示.已知池外墙造价为每米200元,中间两条隔墙造价为每米250元,池底造价为每平方米80元(池壁的厚度忽略不计,且污水处理池无盖).若使污水处理池的总造价最低,那么污水处理池的长和宽分别为(    )
A.40米,10米B.20米,20米C.30米, D.50米,8米
当前题号:9 | 题型:单选题 | 难度:0.99

   现有某种细胞100个,其中占总数的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,当细胞总数超过1010个时,所需时间至少为(参考数据:lg3=0.477,lg2=0.301)(  )

A.44小时B.45小时
C.46小时D.47小时
当前题号:10 | 题型:单选题 | 难度:0.99