- 集合与常用逻辑用语
- 函数与导数
- 利用给定函数模型解决实际问题
- + 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
今有一组实验数据如下:
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )
t | 1.99 | 3.0 | 4.0 | 5.1 | 6.12 |
v | 1.5 | 4.04 | 7.5 | 12 | 18.01 |
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )
A.![]() | B.![]() | C.![]() | D.![]() |
某企业生产
,
两种产品,根据市场调查与预测,
产品的利润
与投资
成正比,其关系如图(1)所示;
产品的利润
与投资
的算术平方根成正比,其关系如图(2)所示(注:利润
和投资
的单位均为万元).


图(1) 图(2)
(1)分别求
,
两种产品的利润
关于投资
的函数解析式.
(2)已知该企业已筹集到18万元资金,并将全部投入
,
两种产品的生产.
①若平均投入两种产品的生产,可获得多少利润?
②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?












图(1) 图(2)
(1)分别求




(2)已知该企业已筹集到18万元资金,并将全部投入


①若平均投入两种产品的生产,可获得多少利润?
②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?
如图,


















(1)求


(2)已知警员的对讲机的有效通话距离是






某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量的算术平方根成正比例,其关系如图1,B产品的利润与投资量成正比例,其关系如图2(注:利润与投资量的单位:万元).

(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
华东师大二附中乐东黄流中学位于我国南海边,有一片美丽的沙滩和一弯天然的海滨浴场.如图,海岸线MAN,
,
(海岸线MAN上方是大海),现用长为BC的栏网围成一个三角形学生游泳场所,其中
.

(1)若
,求三角形游泳场所面积最大值;
(2)若BC=600,
,由于学生人数的增加需要扩大游泳场所面积,现在折线MBCN上方选点D,现用长为BD,DC的栏围成一个四边形游泳场所DBAC,使
,求四边形游泳场所DBAC的最大面积.




(1)若

(2)若BC=600,


近年来,我国多地区遭遇了雾霾天气,引起口罩热销.某品牌口罩原来每只成本为6元.售价为8元,月销售5万只.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润
月销售总收入
月总成本),该口罩每只售价最多为多少元?
(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价
元,并投入
万元作为营销策略改革费用.据市场调查,每只售价每提高0.5元,月销售量将相应减少
万只.则当每只售价
为多少时,下月的月总利润最大?并求出下月最大总利润.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润


(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价




图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =
.
(1)求屋顶面积S关于
的函数关系式;
(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当
为何值时,总造价最低? 


(1)求屋顶面积S关于

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当


如图,已知
,
两镇分别位于东西湖岸
的
处和湖中小岛的
处,点
在
的正西方向
处,
,
,现计划铺设一条电缆联通
,
两镇,有两种铺设方案:①沿线段
在水下铺设;②在湖岸
上选一点
,先沿线段
在地下铺设,再沿线段
在水下铺设,预算地下、水下的电缆铺设费用分别为2万元
、4万元
.
(1)求
,
两镇间的距离;
(2)应该如何铺设,使总铺设费用最低?



















(1)求


(2)应该如何铺设,使总铺设费用最低?

如图,
为
的中线
的中点,过点
的直线分别交
两边于点
,设
,请求出
的关系式,并记

(1)求函数
的表达式;
(2)设
的面积为
,
的面积为
,且
,求实数
的取值范围.
(参考:三角形的面积等于两边长与这两边夹角正弦乘积的一半.)










(1)求函数

(2)设






(参考:三角形的面积等于两边长与这两边夹角正弦乘积的一半.)