十一黄金小长假期间,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用(人工费,消耗费用等等)。受市场调控,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x元(x为10的正整数倍)。
(1) 设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;
(2) 设宾馆一天的利润为w元,求wx的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
当前题号:1 | 题型:解答题 | 难度:0.99
如图,一个铝合金窗分为上、下两栏,四周框架和中间隔档的材料为铝合金,宽均为,上栏与下栏的框内高度(不含铝合金部分)的比为,此铝合金窗占用的墙面面积为.该铝合金窗的宽与高分别为,铝合金窗的透光面积为.

(1)试用表示
(2)若要使最大,则铝合金窗的宽与高分别为多少?
当前题号:2 | 题型:解答题 | 难度:0.99
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购件,服装的实际出厂单价为元,写出函数的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
当前题号:3 | 题型:解答题 | 难度:0.99
如图,某山地车训练中心有一直角梯形森林区域,其四条边均为道路,其中千米,千米,千米.现有甲、乙两名特训队员进行野外对抗训练,要求同时从地出发匀速前往地,其中甲的行驶路线是,速度为千米/小时,乙的行驶路线是,速度为千米/小时.

(1)若甲、乙两名特训队员到达地的时间相差不超过分钟,求乙的速度的取值范围;
(2)已知甲、乙两名特训队员携带的无线通讯设备有效联系的最大距离是千米.若乙先于甲到达地,且乙从地到地的整个过程中始终能用通讯设备对甲保持有效联系,求乙的速度的取值范围.
当前题号:4 | 题型:解答题 | 难度:0.99
某粮油超市每月按出厂价30元/袋购进种大米,根据以往的统计数据,若零售价定为42元/袋,每月可销售320袋.现为了促销,经调查,若零售价每降低一元,则每月可多销售40袋.在每月的进货都销售完的前提下,零售价定为多少元/袋以及每月购进多少袋大米,超市可获得最大利润,并求出最大利润.
当前题号:5 | 题型:解答题 | 难度:0.99
为净化新安江水域的水质,市环保局于2017年底在新安江水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2018年二月底测得蒲草覆盖面积为,2018年三月底测得覆盖面积为,蒲草覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型可供选择.
(Ⅰ)分别求出两个函数模型的解析式;
(Ⅱ)若市环保局在2017年年底投放了的蒲草,试判断哪个函数模型更合适?并说明理由;
(Ⅲ)利用(Ⅱ)的结论,求蒲草覆盖面积达到的最小月份.

(参考数据:

当前题号:6 | 题型:解答题 | 难度:0.99
如图,是一张长、宽的长方形的纸片,现将纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为,().其中点在面积为的部分内,记折痕长为.

(1)若,求的最大值;
(2)若,求的取值范围.
当前题号:7 | 题型:解答题 | 难度:0.99
某种图书,如果以每本2.5元的价格出售,可以售出8万本,若单价每提高0.1元,销售量将减少2000本,如果提价后的单价为元,下列各式中表示销售总收入不低于20万元的是(   )
A.B.
C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
某机构通过对某企业2018年的前三个季度生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:

3
6
9

241
244
229
 
(1)根据上表数据,请从下列三个函数中选取一个恰当的函数描述x的变化关系,并说明理由:
(2)利用(1)中选择的函数:
①估计月利润最大的是第几个月,并求出该月的利润;
②预估年底12月份的利润是多少?
当前题号:9 | 题型:解答题 | 难度:0.99
如果从北大打车到北京车站去接人,聪明的专家一定会选择走四环。虽然从城中间直穿过去看上去很诱人,但考虑到北京的道路几乎总是正南正北的方向,事实上不会真有人认为这样走能抄近路。在城市中,专家估算两点之间的距离时,不会直接去测量两点之间的直线距离,而会去考虑它们相距多少个街区。在理想模型中,假设每条道路都是水平或者竖直的,那么只要你朝着目标走(不故意绕远路),不管你这样走,花费的路程都是一样的。出租车几何学(taxicab geometry),所谓的“出租车几何学”是由十九世纪的另一位真专家赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样。只是直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:
(1)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点的“距离”均为的“圆”方程,并作出大致图像;
(2)在出租车几何学中,到两点“距离”相等的点的轨迹称为线段的“垂直平分线”,已知点
①写出在线段的“垂直平分线”的轨迹方程,并写出大致图像;
②求证:三边的“垂直平分线”交于一点(该点称为的“外心”),并求出的“外心”.
当前题号:10 | 题型:解答题 | 难度:0.99