- 集合与常用逻辑用语
- 函数与导数
- + 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位建造一间背面靠墙的小房,地面面积为
,房屋正面每平方米的造价为
元,房屋侧面每平方米的造价为
元,屋顶的造价为
元.如果墙高为
,且不计房尾背面和地面的费用,问怎样设计房屋能使总造价最低?最低造价是多少?





某电子产品生产企业生产一种产品,原计划每天可以生产
吨产品,每吨产品可以获得净利润
万元,其中
,由于受市场低迷的影响,该企业的净利润出现较大幅度下滑.为提升利润,该企业决定每天投入20万元作为奖金刺激生产.在此方案影响下预计每天可增产
吨产品,但是受原材料数量限制,增产量不会超过原计划每天产量的四分之一.试求在每天投入20万元奖金的情况下,该企业每天至少可获得多少利润(假定每天生产出来的产品都能销售出去).




噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明, 声音强度
(分贝)由公式
(
为非零常数)给出,其中
为声音能量.
(1)当声音强度
满足
时,求对应的声音能量
满足的等量关系式;
(2)当人们低声说话,声音能量为
时,声音强度为30分贝;当人们正常说话,声音能量为
时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.




(1)当声音强度



(2)当人们低声说话,声音能量为


某厂生产某种产品的年固定成本为250万元,每生产
千件,需另投入成本为
,当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元).每件商品售价为0.05万元,通过市场分析,该厂生产的商品能全部销售完.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?




(1)写出年利润


(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量
;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为
(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.

(1)若a=-1,t=5求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.



(1)若a=-1,t=5求“二次复习最佳时机点”;
(2)若出现了“二次复习最佳时机点”,求a的取值范围.
已知A、B两地的距离是100km,按交通法规定,A、B两地之间的公路车速x应限制在60~120km/h,假设汽油的价格是7元/L,汽车的耗油率为
,司机每小时的工资是70元(设汽车为匀速行驶),那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?

著名英国数字家和物理字家lssacNewton曾提出了物体在常温环境下温度变化的冷却模型:把物体放在冷空气中冷却,如果物体的初始温度为
,空气的温度为
分钟后物体的温度
可甶公式
得到,这里
是自然对数的底,
是一个由物体与空气的接触状況而定的正的常数,先将一个初始温度为62
的物体放在15
的空气中冷却,1分钟后物体的温度是52
.
(1)求
的值(精确到0.01);
(2)该物体从最初的62
冷却多少分钟后温度是32
(精确到0.1)?









(1)求

(2)该物体从最初的62


某商店采用分期付款的方式促销一款价格每台为6000元的电脑.商店规定,购买时先支付货款的
,剩余部分在三年内按每月底等额还款的方式支付欠款,且结算欠款的利息.已知欠款的月利率为
.
(1)到第一个月底,货主在第一次还款之前,他欠商店多少元?
(2)假设货主每月还商店
元,写出在第
个月末还款后,货主对商店欠款数表达式.
(3)每月的还款额
为多少元(精确到0.01元)?


(1)到第一个月底,货主在第一次还款之前,他欠商店多少元?
(2)假设货主每月还商店


(3)每月的还款额

经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费
(元)关于每次订货
(单位)的函数关系
,其中
为年需求量,
为每单位物资的年存储费,
为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.
(1)若该化工厂每次订购300吨甲醇,求年存储成本费;
(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?






(1)若该化工厂每次订购300吨甲醇,求年存储成本费;
(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?
某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?