某工厂常年生产红木家具,根据预测可知,该产品近10年的产量平稳增长.记2014年为第1年,且前4年中,第年与年产量(单位:万件)之间的关系如下表所示:

1
2
3
4

4.00
5.61
7.00
8.87
 
近似符合以下三种函数模型之一:①,②,③.则你认为最适合的函数模型的序号为______.
当前题号:1 | 题型:填空题 | 难度:0.99
为了提高资源利用率,2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2019年全年用于垃圾分类的资金为5000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过12800万元的年份是(  )(参考数据:
A.2022年B.2023年C.2024年D.2025年
当前题号:2 | 题型:单选题 | 难度:0.99
经市场调查,某商品每吨的价格为万元时,该商品的月供给量为吨,;月需求量为吨,,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数的取值范围.
当前题号:3 | 题型:解答题 | 难度:0.99
一枚炮弹发射后,经过26s落到地面击中目标,炮弹的射高为845m,且炮弹距地面的高度h(单位:m)与时间t(单位:s)的关系为.①

求①所表示的函数的定义域与值域,并用函数的定义描述这个函数.
当前题号:4 | 题型:解答题 | 难度:0.99
某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份
1
2
3
4
5
6
销售单价(元)
9
9.5
10
10.5
11
8
销售量(件)
11
10
8
6
5
14.2
 
(1)根据1至5月份的数据,先求出关于的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考数据:
参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:
当前题号:5 | 题型:解答题 | 难度:0.99
已知某产品的总成本C与年产量Q之间的关系为,且当年产量是100时,总成本是6000.设该产品年产量为Q时的平均成本为
(1)求的解析式;
(2)求年产量为多少时,平均成本最小,并求最小值.
当前题号:6 | 题型:解答题 | 难度:0.99
销售甲种商品所得利润是万元,它与投入资金万元的关系有经验公式;销售乙种商品所得利润是万元,它与投入资金万元的关系有经验公式,其中为常数.现将3万元资金全部投入甲、乙两种商品的销售;若全部投入甲种商品,所得利润为万元;若全部投入乙种商品,所得利润为1万元,若将3万元资金中的万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为万元.
(1)求函数的解析式;
(2)怎样将3万元资金分配给甲、乙两种商品,才能使所得利润总和最大,并求最大值.
当前题号:7 | 题型:解答题 | 难度:0.99

经市场调查,某旅游城市在过去的一个月内(以天计),第的旅游人数(万人)近似地满足=4+,而人均消费(元)近似地满足.
(Ⅰ)求该城市的旅游日收益(万元)与时间的函数关系式;
(Ⅱ)求该城市旅游日收益的最小值.
当前题号:8 | 题型:解答题 | 难度:0.99
一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(单位:辆)与创造的价值y(单位:元)之间有如下的关系:.若这家工厂希望在一个星期内利用这条流水线创收60000元以上,则在一个星期内大约应该生产多少辆摩托车?
当前题号:9 | 题型:解答题 | 难度:0.99
如图,在半径为的半圆形(为圆心)铝皮上截取一块矩形材料,其中在直径上,点在圆周上.

(1)设,将矩形的面积表示成的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料的面积最大?并求出最大面积.
当前题号:10 | 题型:解答题 | 难度:0.99