- 集合与常用逻辑用语
- 函数与导数
- + 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着我国居民生活水平的不断提高,汽车逐步进入百姓家庭,但随之面来的交通拥堵和交通事故时有发生,给人民的生活也带来了诸多不便.某市为了确保交通安全.决定对交通秩序做进步整顿,对在通路上行驶的前后相邻两机动车之间的距离d(米)与机动车行驶速度v(千米/小时)做出如下两条规定:
①
av2;
②
.(其中a是常量,表示车身长度,单位:米)
(1)当
时.求机动车的最大行驶速度;
(2)设机动车每小时流量Q
,问当机动车行驶速度v≥30(千米/小时)时,机动车以什么样的状态行驶,能使机动车每小时流量Q最大?并说明理由.(机动车每小时流量Q是指每小时通过观测点的车辆数)
①

②

(1)当

(2)设机动车每小时流量Q

某地区上年度电价为0.8元
,年用电量为
,本年度计划将电价降到0.55 元
至0.75元
之间,而用户期待电价为0.4元
,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3元
.(注:收益=实际用电量
(实际电价-成本价)),示例:若实际电价为0.6元
,则下调电价后新增加的用电量为
元
)
(1)写出本年度电价下调后,电力部门的收益
与实际电价
的函数关系;
(2)设
,当电价最低为多少仍可保证电力部门的收益比上一年至少增长
?










(1)写出本年度电价下调后,电力部门的收益


(2)设


运货卡车以每小时
千米的速度匀速行驶
千米,按交通法规则限制
(单位:千米/小时),假设汽油的价格是每升
元,而汽车每小时耗油
升,司机工资是每小时
元.
(1)求这次行车总费用
关于
的表达式;
(2)当
为何值时,这次行车的总费用最低,并求出最低费用的值.(精确到
)






(1)求这次行车总费用


(2)当


某生物探测器在水中逆流行进时,所消耗的能量为E=cvnT,其中v为行进时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km.
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
保护环境,防治环境污染越来越得到人们的重视,某企业在现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
.现为了减少大气污染,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后,当日产量
时,每日生产总成本
.
(1)求
的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少吨时,每吨产品的利润最大,最大利润为多少万元?






(1)求

(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少吨时,每吨产品的利润最大,最大利润为多少万元?
某村充分利用自身资源,大力发展养殖业以增加收入.计划共投入80万元,全部用于甲、乙两个项目,要求每个项目至少要投入20万元在对市场进行调研时发现甲项目的收益
与投入x(单位:万元)满足
,乙项目的收益
与投入x(单位:万元)满足
.
(1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;
(2)问甲、乙两个项目各投入多少万元时,总收益最大?




(1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;
(2)问甲、乙两个项目各投入多少万元时,总收益最大?
已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度
(单位:℃)对某种鸡的时段产蛋量
(单位:
)的影响.为此,该企业收集了7个鸡舍的时段控制温度
和产蛋量
的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
其中
,
.

(1)根据散点图判断,
与
哪一个更适宜作为该种鸡的时段产蛋量
关于鸡舍时段控制温度
的回归方程类型?(给判断即可,不必说明理由)
(2)若用
作为回归方程模型,根据表中数据,求出
关于
的回归方程;
(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
②参考值.





![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
17.4 | 82.3 | 3.6 | 140 | 9.7 | 2935.1 | 35 |
其中



(1)根据散点图判断,




(2)若用



(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据



②参考值.
![]() | ![]() | ![]() | ![]() | ![]() |
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
某投资公司计划投资
、
两种金融产品,根据市场调查与预测,
产品的利润
与投资量x成正比例,其关系如图1,
产品的利润
与投资量x的算术平方根成正比例,其关系如图2;(利润与投资量单位:万元)


(1)分别将
、
两产品的利润表示为投资量的函数关系式;
(2)该公司已有20万元资金,并全部投入
、
两种产品中,问:怎样分配这20万元投资,才能使公司获得最大利润?其最大利润为多少万元?








(1)分别将


(2)该公司已有20万元资金,并全部投入


已知某民族品牌手机生产商为迎合市场需求,每年都会研发推出一款新型号手机.该公司现研发了一款新型智能手机并投入生产,生产这款手机的月固定成本为80万元,每生产1千台,须另投入27万元,设该公司每月生产
千台并能全部销售完,每1千台的销售收入为
万元,且
.为更好推广该产品,手机生产商每月还支付各类广告费用20万元.
(Ⅰ)写出月利润
(万元)关于月产量
(千台)的函数解析式;
(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?



(Ⅰ)写出月利润


(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?
某公司为了激励业务员的积极性,对业绩在60万到200万的业务员进行奖励奖励方案遵循以下原则:奖金y(单位:万元)随着业绩值x(单位:万元)的增加而增加,且奖金不低于1.5万元同时奖金不超过业绩值的5%.
(1)若某业务员的业绩为100万核定可得4万元奖金,若该公司用函数
(k为常数)作为奖励函数模型,则业绩200万元的业务员可以得到多少奖励?(已知
,
)
(2)若采用函数
作为奖励函数模型试确定最小的正整数a的值.
(1)若某业务员的业绩为100万核定可得4万元奖金,若该公司用函数



(2)若采用函数
