- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
物联网(Internet of Things,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络. 其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景. 现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费
(单位:万元),仓库到车站的距离
(单位:千米,
),其中
与
成反比,每月库存货物费
(单位:万元)与
成正比;若在距离车站9千米处建仓库,则
和
分别为2万元和7. 2万元. 这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?









如图,某地要在矩形区域
内建造三角形池塘
,
、
分别在
、
边上.
米,
米,
,设
,
.

(1)试用解析式将
表示成
的函数;
(2)求三角形池塘
面积
的最小值及此时
的值.












(1)试用解析式将


(2)求三角形池塘



近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为
,去除推进剂后的火箭有效载荷质量为
,火箭的飞行速度为
,初始速度为
,已知其关系式为齐奥尔科夫斯基公式:
,其中
是火箭发动机喷流相对火箭的速度,假设
,
,
,
是以
为底的自然对数,
,
.
(1)如果希望火箭飞行速度
分别达到第一宇宙速度
、第二宇宙速度
、第三宇宙速度
时,求
的值(精确到小数点后面1位).
(2)如果希望
达到
,但火箭起飞质量最大值为
,请问
的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.













(1)如果希望火箭飞行速度





(2)如果希望




某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:
则下列函数模型中,能较好地反映计算机在第
天被感染的数量
与
之间的关系的是
第![]() | 1 | 2 | 3 | 4 | 5 |
被感染的计算机数量![]() | 10 | 20 | 39 | 81 | 160 |
则下列函数模型中,能较好地反映计算机在第



A.![]() | B.![]() |
C.![]() | D.![]() |
某创新团队拟开发一种新产品,根据市场调查估计能获得10万元到1000万元的收益,先准备制定一个奖励方案:奖金
(单位:万元)随收益
(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过收益的20%.
(1)若建立函数
模型制定奖励方案,试用数学语言表示该团队对奖励函数
模型的基本要求,并分析
是否符合团队要求的奖励函数模型,并说明原因;
(2)若该团队采用模型函数
作为奖励函数模型,试确定最小的正整数
的值.


(1)若建立函数



(2)若该团队采用模型函数


如图,一个角形海湾
(常数
为锐角).拟用长度为
(
为常数)的围网围成一个养殖区,有以下两种方案可供选择:方案一:如图1,围成扇形养殖区
,其中
;方案二:如图2,围成三角形养殖区
,其中
.

(1)求方案一中养殖区的面积
;
(2)求方案二中养殖区的最大面积(用
表示);
(3)为使养殖区的面积最大,应选择何种方案?并说明理由.









(1)求方案一中养殖区的面积

(2)求方案二中养殖区的最大面积(用

(3)为使养殖区的面积最大,应选择何种方案?并说明理由.
某企业常年生产一种出口产品,根据预测可知,进入
世纪以来,该产品的产量平稳增长.记
年为第
年,且前
年中,第
年与年产量
万件之间的关系如下表所示:
若
近似符合以下三种函数模型之一:
,
,
.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,
年的年产量比预计减少
,试根据所建立的函数模型,确定
年的年产量.






![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
若




(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,



某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )
A.118元 | B.105元 | C.106元 | D.108元 |
某大学要修建一个面积为
的长方形景观水池,并且在景观水池四周要修建出宽为2m和3m的小路
如图所示
问如何设计景观水池的边长,能使总占地面积最小?并求出总占地面积的最小值.



