- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,将一矩形花坛
扩建成一个更大的矩形花坛
,要求
点在
上,
点在
上,且对角线
过
点.已知AB=3米,AD=2米.

(1)要使矩形
的面积大于32平方米,请问
的长应在什么范围;
(2)当
的长度是多少时,矩形
的面积最小,并求出最小面积.









(1)要使矩形


(2)当


某企业为打入国际市场,决定从
两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)

其中年固定成本与年生产的件数无关,
为待定常数,其值由生产
产品的原材料价格决定,预计
.另外,年销售
件
产品时需上交
万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产
两种产品的年利润
与生产相应产品的件数
之间的函数关系,并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.


其中年固定成本与年生产的件数无关,






(1)写出该厂分别投资生产



(2)如何投资才可获得最大年利润?请你做出规划.
燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度
与耗氧量
之间满足函数关系
.若两岁燕子耗氧量达倒
个单位时,其飞行速度为
,则两岁燕子飞行速度为
时,耗氧量达到__________单位.






某港口水深y(米)是时间
(单位:小时)的函数,下表是水深数据:
根据上述数据描成的曲线如图所示,经拟合,该曲线可近似地看成正弦函数
的图象.

(1)试根据数据表和曲线,求出
的表达式;
(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)

t(小时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.1 |
根据上述数据描成的曲线如图所示,经拟合,该曲线可近似地看成正弦函数


(1)试根据数据表和曲线,求出

(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)
如图,某油田计划在铁路线
一侧建造两家炼油厂
、
,同时在铁路线上建一个车站
,用来运送成品油.先从车站出发铺设一段垂直于铁道方向的公共输油管线
,再从
分叉,分别向两个炼油厂铺设管线
、
.图中各小写字母表示的距离(单位:千米)分别为
,
,
.设所有管线的铺设费用均为每千米7.2万元,公共输油管线长为
,总的输油管道长度为
.

(Ⅰ)若
,请确定车站
的位置,使得总的输油管道长度为
最小,此时输油管线铺设费用是多少?
(Ⅱ)请问从降低输油管线铺设费用的角度出发,是否需要铺设公用管线.如果需要请给出能够降低费用管线铺设方案(精度为0.1千米).
(参考数据:
,
,
,
,
,
,
,
,
,
,
.)














(Ⅰ)若



(Ⅱ)请问从降低输油管线铺设费用的角度出发,是否需要铺设公用管线.如果需要请给出能够降低费用管线铺设方案(精度为0.1千米).
(参考数据:











2016年11月3日20点43分我国长征运载火箭在海南文昌发射中心成功发射,它被公认为我国已从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用很多新材料,甲工厂承担了某种材料的生产,并以
千克/时的速度匀速生产(为保证质量要求
),每小时可消耗
材料
千克,已知每小时生产1千克该产品时,消耗
材料10千克.
(1)设生产
千克该产品,消耗
材料
千克,试把
表示为
的函数.
(2)要使生产1000千克该产品消耗的
材料最少,工厂应选取何种生产速度?并求消耗的
材料最少为多少?





(1)设生产





(2)要使生产1000千克该产品消耗的


辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价
(单位:元)与上市时间
(单位:天)的数据如下:
(1)根据上表数据,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价
与上市时间
的变化关系:①
;②
;③
;
(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格;
(3)设你选取的函数为
,若对任意实数
,方程
恒有两个相异的零点,求
的取值范围.


上市时间![]() | 4 | 10 | 36 |
市场价![]() | 90 | 51 | 90 |
(1)根据上表数据,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价





(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格;
(3)设你选取的函数为




在经济学中,函数
的边际函数
定义为
.某医疗设备公司生产某医疗器材,已知每月生产
台
的收益函数为
(单位:万元),成本函数
(单位:万元),该公司每月最多生产
台该医疗器材.(利润函数=收益函数-成本函数)
(1)求利润函数
及边际利润函数
;
(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到
)
(3)求
为何值时利润函数
取得最大值,并解释边际利润函数
的实际意义.








(1)求利润函数


(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到

(3)求



2109年11月2日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形
,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,
,其中
为球半径,
为圆柱底面积,
为圆柱的高)

(1)求胶囊中药物的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?









(1)求胶囊中药物的体积


(2)如何设计



一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.

