- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校开展研究性学习活动,一组同学获得了下面的一组试验数据:
现有如下4个模拟函数:
①y=0.6x-0.2;②y=x2-55x+8;③y=log2x;④y=2x-3.02.
请从中选择一个模拟函数,使它比较近似地反应这些数据的规律,应选( )
x | 1.99 | 2.8 | 4 | 5.1 | 8 |
y | 0.99 | 1.58 | 2.01 | 2.35 | 3.00 |
现有如下4个模拟函数:
①y=0.6x-0.2;②y=x2-55x+8;③y=log2x;④y=2x-3.02.
请从中选择一个模拟函数,使它比较近似地反应这些数据的规律,应选( )
A.![]() | B.![]() | C.![]() | D.![]() |
某小型玩具厂研发生产一种新型玩具,年固定成本为10万元,每生产千件需另投入3万元,设该厂年内共生产该新型玩具
千件并全部销售完,每千件的销售收入为
万元,且满足函数关系:
.
(1)写出年利润
(万元)关于该新型玩具年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在此新型玩具的生产中所获年利润最大?最大利润为多少?



(1)写出年利润


(2)年产量为多少千件时,该厂在此新型玩具的生产中所获年利润最大?最大利润为多少?
某同学为研究函数
的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设
,则
.请你参考这些信息,推知函数
的图象的对称轴是______;函数
的零点的个数是______.






建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过
时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:
)随时间(
,单位:小时)的大致变化曲线,若该曲线近似的满足函数
关系.

(1)求函数
的表达式;
(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?





(1)求函数

(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭?
对于函数
,若存在实数,使得
成立,则x0称为f(x)的“不动点”.
(1)设函数
,求
的不动点;
(2)设函数
,若对于任意的实数b,函数f(x)恒有两相异的不动点,求实数a的取值范围;
(3)设函数
定义在
上,证明:若
存在唯一的不动点,则
也存在唯一的不动点.


(1)设函数


(2)设函数

(3)设函数




已知
的半衰期为
年(是指经过
年后,
的残余量占原始量的一半).设
的原始量为
,经过
年后的残余量为
,残余量
与原始量
的关系如下:
,其中
表示经过的时间,
为一个常数.现测得湖南长沙马王堆汉墓女尸出土时
的残余量约占原始量的
.请你推断一下马王堆汉墓的大致年代为距今________年.(已知
)
















如图所示,某街道居委会拟在
地段的居民楼正南方向的空白地段
上建一个活动中心,其中
米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形
,上部分是以
为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长
不超过2.5米,其中该太阳光线与水平线的夹角
满足
.

(1)若设计
米,
米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计
与
的长度,可使得活动中心的截面面积最大?(注:计算中
取3)









(1)若设计


(2)在保证上述采光要求的前提下,如何设计



近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量
(单位:千件)与销售价格
(单位:元/件)之间满足如下的关系式:
为常数.已知销售价格为
元/件时,每月可售出
千件.
(1)求实数
的值;
(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格
的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)





(1)求实数

(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格

如图,一条小河岸边有相距
的
两个村庄(村庄视为岸边上
两点),在小河另一侧有一集镇
(集镇视为点
),
到岸边的距离
为
,河宽
为
,通过测量可知,
与
的正切值之比为
.当地政府为方便村民出行,拟在小河上建一座桥
(
分别为两岸上的点,且
垂直河岸,
在
的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知
两村的人口数分别是
人、
人,假设一年中每人去集镇的次数均为
次.设
.(小河河岸视为两条平行直线)

(1)记
为一年中两村所有人到集镇所走距离之和,试用
表示
;
(2)试确定
的余弦值,使得
最小,从而符合建桥要求.
























(1)记



(2)试确定


某小区内有如图所示的一矩形花坛,现将这一矩形花坛
扩建成一个更大的矩形花坛
,要求
点在
上,
点在
上,且对角线
过
点,已知
米,
米.

(1)要使矩形
的面积大于32平方米,则
的长应在什么范围内?
(2)当
的长度是多少时,矩形花坛
的面积最小?并求出最小值.











(1)要使矩形


(2)当

