如图,某公园摩天轮的半径为40m,点O距地面的高度为50m,摩天轮做匀速转动,每10min转一圈,摩天轮上的点P的起始位置在最低点处.

已知在时刻时点P距离地面的高度为,其中,求的解析式;
在摩天轮转动的一圈内,有多长时间点P距离地面超过70m?
当前题号:1 | 题型:解答题 | 难度:0.99
某工厂在生产产品时需要用到长度为型和长度为型两种钢管.工厂利用长度为的钢管原材料,裁剪成若干型和型钢管,假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.
(1)要使裁剪的废料率小于,共有几种方案剪裁?请写出每种方案中分别被裁剪型钢管和型钢管的根数;
(2)假设一根型钢管和一根型钢管能成为一套毛胚,假定只能按(1)中的那些方案裁剪,若工厂需要生产套毛胚,则至少需要采购多少根长度为的钢管原材料?最终的废料率为多少?
当前题号:2 | 题型:解答题 | 难度:0.99
一条隧道的横断面由抛物线弧及一个矩形的三边围成,尺寸如图所示单位:,一辆卡车空车时能通过此隧道,现载一集装箱,箱宽3m,车与箱共高,此车是否能通过隧道?并说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
建造一间地面面积为12的背面靠墙的猪圈, 底面为长方形的猪圈正面的造价为120元/, 侧面的造价为80元/, 屋顶造价为1120元. 如果墙高3, 且不计猪圈背面的费用, 问怎样设计能使猪圈的总造价最低, 最低总造价是多少元?
当前题号:4 | 题型:解答题 | 难度:0.99
我国古代某数学著作中记载了一个折竹抵地问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”意思是:有一根竹子(与地面垂直),原高二丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离为六尺,则折断处离地面的高为__________尺.
当前题号:5 | 题型:填空题 | 难度:0.99
著名英国数学和物理学家IssacNewton(1643年-1727年)曾提出了物质在常温环境下温度变化的冷却模型.把物体放在冷空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,tmin后物体温度θ℃,可由公式θ=θ0+(θ10)e-kt(e为自然对数的底数)得到,这里k是一个随着物体与空气的接触状况而定的正的常数.现将一个原来温度为62℃的物体放在15℃的空气中冷却,1min以后物体的温度是52℃.
(Ⅰ)求k的值(精确到0.01);
(Ⅱ)该物体从原来的62℃开始冷却多少min后温度是32℃?
(参考数据:ln≈-0.24,ln≈-0.55,ln≈-1.02)
当前题号:6 | 题型:解答题 | 难度:0.99
已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律:
(1)如果,求经过多少时间,物体的温度为5摄氏度;
(2)若物体的温度总不低于2摄氏度,求m的取值范围.
当前题号:7 | 题型:解答题 | 难度:0.99
某公司计划投资开发一种新能源产品,预计能获得10万元1000万元的收益.现准备制定一个对开发科研小组的奖励方案:奖金(单位:万元)随收益(单位:万元)的增加而增加,且奖金总数不超过9万元,同时奖金总数不超过收益的.
(Ⅰ)若建立奖励方案函数模型,试确定这个函数的定义域、值域和的范围;
(Ⅱ)现有两个奖励函数模型:①;②.试分析这两个函数模型是否符合公司的要求?请说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
某商场预计全年分批购入每台价值为2000元的电视机共3600台.每批都购入,且每批均需付运费400元.贮存购入所有的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,比例系数为,若每批购入400台,则全年需用去运输和保管总费用43600元.
(1)求的值;
(2)现在全年只有24000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
我国古代数学著作《孙子算经》中记载:“今有三人共车,二车空,二人共车,九人步.问人车各几何?”其大意是:“每车坐人,两车空出来;每车坐人,多出人步行.问人数和车数各多少?”根据题意,其数为______辆.
当前题号:10 | 题型:填空题 | 难度:0.99