- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水符合指数衰减曲线y=aent.假设过5分钟后甲桶和乙桶的水量相等,若再过m分钟甲桶中的水只有
,则m=________.

某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差________元.

如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5 m.
(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;

(2)若行车道总宽度AB为7 m,请计算通过隧道的车辆限制高度为多少米(精确到0.1 m)?
(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;

(2)若行车道总宽度AB为7 m,请计算通过隧道的车辆限制高度为多少米(精确到0.1 m)?
某工厂拟建一个平面图形为矩形,且总面积为400平方米的三级污水处理池,如图R3-1所示.已知池外墙造价为每米200元,中间两条隔墙造价为每米250元,池底造价为每平方米80元(池壁的厚度忽略不计,且污水处理池无盖).若使污水处理池的总造价最低,那么污水处理池的长和宽分别为( )


A.40米,10米 | B.20米,20米 | C.30米, ![]() | D.50米,8米 |
现有某种细胞100个,其中占总数的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,当细胞总数超过1010个时,所需时间至少为(参考数据:lg3=0.477,lg2=0.301)( )
A.44小时 | B.45小时 |
C.46小时 | D.47小时 |
某物体一天中的温度T是关于时间t的函数:
,时间单位是小时,温度单位是℃,
表示中午12:00,其前t值为负,其后t值为正,则上午8时的温度是( )


A.8℃ | B.12℃ | C.58℃ | D.18℃ |
某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低
万元与技术改造投入
万元之间满足:①
与
和
的乘积成正比;②当
时,
,并且技术改造投入比率
,
为常数且
.
(1)求
的解析式及其定义域;
(2)求
的最大值及相应的
值.










(1)求

(2)求


如图所示,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin ωx(A>0,ω>0,x∈[0,4])的图象,且图象的最高点为S(3,2
);赛道的后一部分为折线段MNP.求A,ω的值和M,P两点间的距离.


某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:
f(t)=10-
cos
t-sin
t,t∈[0,24).
(1)求实验室这一天的最大温差.
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
f(t)=10-



(1)求实验室这一天的最大温差.
(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
某公司为了实现2013年销售利润1 000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过销售利润的25%.现有三个奖励模型:y=0.025x,y=1.003x,y=
ln x+1,问其中是否有模型能完全符合公司的要求?请说明理由.
(参考数据:
,
,
)

(参考数据:


