- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设某物体一天中的温度
是时间
的函数,已知
,其中温度的单位是
,时间的单位是小时,规定中午12:00相应的
,中午12:00以后相应的
取正数,中午12:00以前相应的
取负数(例如早上8:00相应的
,下午16:00相应的
),若测得该物体在中午12:00的温度为
,在下午13:00的温度为
,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度
关于时间
的函数关系式;
(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?











(1)求该物体的温度


(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?
某投资公司拟投资开发某项新产品,市场评估能获得10~1 000万元的投资收益.现公司准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不低于1万元,同时不超过投资收益的20%.
(1) 设奖励方案的函数模型为f(x),试用数学语言表述公司对奖励方案的函数模型f(x)的基本要求;
(2) 公司能不能用函数f(x)=
+2作为预设的奖励方案的模型函数?
(1) 设奖励方案的函数模型为f(x),试用数学语言表述公司对奖励方案的函数模型f(x)的基本要求;
(2) 公司能不能用函数f(x)=

某公司生产的某种时令商品每件成本为
元,经过市场调研发现,这种商品在未来
天内的日销售量
(件)与时间
(天)的关系如下表所示.
未来40天内,前20天每天的价格
(元/件)与时间
(天)的函数关系式为
,且
为整数),后20天每天的价格
(元/件)与时间
(天)的函数关系式为
,且
为整数).
(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据
(件)与
(天)的关系式;
(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?
(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠
元利润
给希望工程. 公司通过销售记录发现,前 20 天中,每天扣除捐赠后的日销售利润随时间
(天)的增大而增大,求
的取值范围.




时间![]() | 1 | 3 | 6 | 10 | 36 | …… |
日销售量
| 94 | 90 | 84 | 76 | 24 | …… |
未来40天内,前20天每天的价格








(Ⅰ)认真分析表格中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据


(Ⅱ)试预测未来 40 天中哪一天的日销售利润最大,最大利润是多少?
(Ⅲ)在实际销售的前 20 天中,该公司决定每销售 1 件商品就捐赠




一工厂对某种原料的全年需求量是Q吨,为保证生产又节省开支,打算全年分若干次等量订购,且每次用完后立即购进.已知每次订购费用是
元,工厂每天使用的原料数量相同,仓库贮存原料的年保管费用是
元/吨,问全年订购多少次,才能使订购费用与保管费用之和最少?


我们知道:人们对声音有不同的感觉,这与它的强度有关系.声音的强度
用瓦/米2 (
)表示,但在实际测量时,常用声音的强度水平
表示,它们满足以下公式:
(单位为分贝,
,其中
,这是人们平均能听到的最小强度,是听觉的开端).回答以下问题:
(1)树叶沙沙声的强度是
,耳语的强度是
,恬静的无线电广播的强度是
,试分别求出它们的强度水平;
(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度
的范围为多少?






(1)树叶沙沙声的强度是



(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度

为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销获得,经调查测算,该产品的年销量(即该厂的年产量)
万件与年促销费用
万元满足
(
为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(成产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数
,并将该厂家2016年该产品的利润
万元表示为年促销费用
万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?




(1)求常数



(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?
某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为t1小时,其余工人加工完乙型装置所需时间为t2小时.
设f(x)=t1+t2.
(Ⅰ)求f(x)的解析式,并写出其定义域;
(Ⅱ)当x等于多少时,f(x)取得最小值?
如图,一直角墙角的两边足够长,若
处有一棵树(不考虑树的粗细)与两墙的距离分别是
和
(
),现用
长的篱笆,借助墙角围成一个矩形花圃
,设此矩形花圃的最大面积为
,若将这棵树围在矩形花圃内(包括边界),则函数
(单位:
)的图象大致是( )











A.![]() | B.![]() |
C.![]() | D.![]() |
一大学生自主创业,拟生产并销售某电子产品
万件(生产量与销售量相等),为扩大影响进行促销,促销费用
(万元)满足
(其中
为正常数).已知生产该产品还需投入成本
万元(不含促销费用),产品的销售价格定为
元/件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,此大学生所获利润最大?






(1)将该产品的利润


(2)促销费用投入多少万元时,此大学生所获利润最大?
某农贸公司按每担200元的价格收购某农产品,并按每100元纳税10元(又称征税率为10个百分点)进行纳税,计划可收购
万担,政府为了鼓励收购公司多收购这种农产品,决定将征税降低
(
)个百分点,预测收购量可增加
个百分点.
(1)写出税收
(万元)与
的函数关系式;
(2)要使此项税收在税率调整后不少于原计划税收的
,试确定
的取值范围




(1)写出税收


(2)要使此项税收在税率调整后不少于原计划税收的

