- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某景区提供自行车出租,该景区有辆自行车供游客租赁使用,管理这些自行车的费用是每日
元.根据经验,若每辆自行车的日租金不超过
元,则自行车可以全部租出;若超出
元,则每超过
元,租不出的自行车就增加
辆.为了便于结算,每辆自行车的日租金
(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用
(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).
(1)求函数
的解析式;
(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?







(1)求函数

(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?
如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知
且
设
,绿地面积为
.
(1)写出
关于
的函数关系式,并指出这个函数的定义域.
(2)当
为何值时,绿地面积
最大?




(1)写出


(2)当



某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
(1)若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式;
(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
某物流公司购买了一块长AM=30米,宽AN=20米的矩形地块,计划把图中矩形ABCD建设为仓库,其余地方为道路和停车场,要求顶点C在地块对角线MN上,B、D分别在边AM、AN上,假设AB的长度为x米

(1)求矩形ABCD的面积S关于x的函数解析式;
(2)要使仓库占地ABCD的面积不少于144平方米,则AB的长度应在什么范围内?

(1)求矩形ABCD的面积S关于x的函数解析式;
(2)要使仓库占地ABCD的面积不少于144平方米,则AB的长度应在什么范围内?
为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车.已知每日来回趟数y是每次拖挂车厢节数x的一次函数,如果该列火车每次拖4节车厢,每日能来回16趟;如果每次拖6节车厢,则每日能来回10趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客110人.
(1)求出y关于x的函数;
(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?
(1)求出y关于x的函数;
(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?
某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有如下公式:
,
,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.
(Ⅰ)设对乙种产品投入资金x(万元),求总利润y(万元)关于x的函数关系式及其定义域;
(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.


(Ⅰ)设对乙种产品投入资金x(万元),求总利润y(万元)关于x的函数关系式及其定义域;
(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.
某商品进价为每件
元,当售价为每件
元时,一个月能卖出
件,通过市场调查发现,若每件商品的单价每提高
元,则商品一个月的销售量会减少
件,商店为使销售该商品月利润最好,则应将每件商品定价为____________元.





某公司生产甲、乙两种产品所得利润分别为
和
(万元),它们与投入资金(万元)的关系有经验公式
,
.今将120万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额都不低于20万元.
(Ⅰ)设对乙产品投入资金
万元,求总利润
(万元)关于
的函数关系式及其定义域;
(Ⅱ)如何分配使用资金,才能使所得总利润最大?最大利润为多少?




(Ⅰ)设对乙产品投入资金



(Ⅱ)如何分配使用资金,才能使所得总利润最大?最大利润为多少?
某服装批发商经营的某种服装,进货成本
元/件,对外批发价定为
元/件,该商场为了鼓励购买者大批量购买,推出优惠政策:一次购买不超过
件时,只享受批发价;一次购买超过
件时,每多购买
件,购买者所购买的所有服装可在享受批发价的基础上,再降低
元/件,但最低价不低于
元/件.
(1)问一次购买多少件时,售价恰好是
元/件;
(2)设购买者一次购买
件,商场的利润为
元(利润=销售总额-成本),试写出函数
的表达式,并说明在售价高于
元/件时,购买者一次购买多少件,商场利润最大?







(1)问一次购买多少件时,售价恰好是

(2)设购买者一次购买




某商店某种商品的进货价为每件
元,当售价为每件
元时,一个月能卖出
件.通过市场调查发现,若每件商品的售价每提高
元,则该商品一个月的销售量会减少
件.商店为使销售商品的月利润最高,应将该商品定价为多少?并求出最大利润.




