- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
上海某玩具厂生产
万套世博会吉祥物海宝所需成本费用为
元,且
,而每万套售出价格为
元,其中
,问:
(1)该玩具厂生产多少万套吉祥物时,使得每万套成本费用最低?
(2)若产出的吉祥物能全部售出,问产量多大时,厂家所获利润最大?





(1)该玩具厂生产多少万套吉祥物时,使得每万套成本费用最低?
(2)若产出的吉祥物能全部售出,问产量多大时,厂家所获利润最大?
甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如下图所示。

甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只。
乙调查表明:甲鱼池个数由第1年30个减少到第6年10个,请你根据提供的信息说明:
(1)第2年甲鱼池的个数及全县出产甲鱼总数;
(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;
(3)哪一年的规模最大?说明理由

甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只。
乙调查表明:甲鱼池个数由第1年30个减少到第6年10个,请你根据提供的信息说明:
(1)第2年甲鱼池的个数及全县出产甲鱼总数;
(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;
(3)哪一年的规模最大?说明理由
(2015年苏州18)根据市场调查,某种新产品投放市场的30天内,每件销售价格P (元)与时间t (天
)的关系满足下图,日销量Q (件)与时间t(天)之间的关系是
.
(1)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?
(日销量金额=每件产品销售价格×日销量)


(1)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?
(日销量金额=每件产品销售价格×日销量)

如图所示,有一块边长为a的正方形铁皮,将其四角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V以x为自变量的函数式,并指明这个函数的定义域.

某商品每件成本
元,售价
元,每星期卖出
件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值
(单位:元,
)成正比.已知商品降低
元时,一星期多卖出
件.
(
)将一星期的商品销售利润表示成
的函数;
(
)如何定价才能使一个星期的商品销售利润最大,是多少?







(


(

某投资人欲将5百万元奖金投入甲、乙两种理财产品,根据银行预测,甲、乙两种理财产品的收益与投入奖金
的关系式分别为
,其中
为常数且
.设对乙种产品投入奖金
百万元,其中
.
(1)当
时,如何进行投资才能使得总收益
最大;(总收益
)
(2)银行为了吸储,考虑到投资人的收益,无论投资人奖金如何分配,要使得总收益不低于
,求
的取值范围.






(1)当



(2)银行为了吸储,考虑到投资人的收益,无论投资人奖金如何分配,要使得总收益不低于


经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-
|t-10|.
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.

(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
某种商品进价为每件20元,在最近的40天内每件商品的销售价格P(单位:元)与时间t的函数关系式是:
,该商品的销售量Q件与t天的函数关系式是:
.
(1)求最近40天内这种商品的日销售利润M(单位:元)关于时间
的函数关系式;
(2)求M的最大值,并求此时
的值.



(1)求最近40天内这种商品的日销售利润M(单位:元)关于时间

(2)求M的最大值,并求此时

小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量
(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.

(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)


(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)