某纪念章从2018年10月1日起开始上市,通过市场调查,得到该纪念章每1枚的市场价(单位:元)与上市时间(单位:天)的数据如下:
上市时间
4
10
36
市场价
90
51
90
 
(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.
当前题号:1 | 题型:解答题 | 难度:0.99
经市场调查,某门市部的一种小商品在过去的20天内的日销售量(件)与价格(元)均为时间(天)的函数,且日销售量近似满足函数(件),而且销售价格近似满足于(元).
(1)试写出该种商品的日销售额与时间的分段函数表达式
(2)求该种商品的日销售额的最大值.
当前题号:2 | 题型:解答题 | 难度:0.99
某数学小组到进行社会实践调查,了解鑫鑫桶装水经营部在为如何定价发愁。进一步调研了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表:
销售单价/元
6
7
8
9
10
11
12
日均销售量/桶
480
440
400
360
320
280
240
 
根据以上信息,你认为该经营部定价为多少才能获得最大利润?(   )
A.每桶8.5元B.每桶9.5元C.每桶10.5元D.每桶11.5元
当前题号:3 | 题型:单选题 | 难度:0.99
某小电子产品2018年的价格为9元/件,年销量为件,经销商计划在2019年将该电子产品的价格降为元/件(其中),经调查,顾客的期望价格为5元/件,经测算,该电子产品的价格下降后年销量新增加了件(其中常数).已知该电子产品的成本价格为4元/件.
(1)写出该电子产品价格下降后,经销商的年收益与实际价格的函数关系式:(年收益=年销售收入-成本)
(2)设,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?
当前题号:4 | 题型:解答题 | 难度:0.99
某粮油超市每月按出厂价30元/袋购进种大米,根据以往的统计数据,若零售价定为42元/袋,每月可销售320袋.现为了促销,经调查,若零售价每降低一元,则每月可多销售40袋.在每月的进货都销售完的前提下,零售价定为多少元/袋以及每月购进多少袋大米,超市可获得最大利润,并求出最大利润.
当前题号:5 | 题型:解答题 | 难度:0.99
某地通过市场调查得到西红柿种植成本(单位:元/千克)与上市时间(单位:天)的数据如下表:
时间



种植成本



 
(1)根据上表数据,发现二次函数能够比较准确描述的变化关系,请求出函数的解析式;
(2)利用选取的函数,求西红柿最低种植成本及此时的上市天数.
当前题号:6 | 题型:解答题 | 难度:0.99
某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.
当前题号:7 | 题型:解答题 | 难度:0.99
已知A、B两城相距100km,在两地之间距A城km处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数.若A城供电量为20亿度/月,B城为10亿度/月.
(1)把月供电总费用表示成的函数,并求定义域;
(2)核电站建在距A城多远,才能使供电费用最小.
当前题号:8 | 题型:解答题 | 难度:0.99
某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点为圆心的两个同心圆弧和延长后通过点的两条线段围成.设圆弧所在圆的半径分别为米,圆心角为(弧度).

(1)若,求花坛的面积;
(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为元/米,弧线部分的装饰费用为元/米,预算费用总计元,问线段的长度为多少时,花坛的面积最大?
当前题号:9 | 题型:解答题 | 难度:0.99
某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨,则每年的销售数量将减少,其中m为正常数,销售的总金额为y万元.
(1)当时,该产品每吨的价格上涨百分之几,可使销售总金额最大?
(2)当时,若能使销售总金额比涨价前增加,试设定m的取值范围.
当前题号:10 | 题型:解答题 | 难度:0.99