刷题首页
题库
高中数学
题干
某公司生产一种化工产品,该产品若以每吨10万元的价格销售,每年可售出1000吨,若将该产品每吨分价格上涨
,则每年的销售数量将减少
,其中
m
为正常数,销售的总金额为
y
万元.
(1)当
时,该产品每吨的价格上涨百分之几,可使销售总金额最大?
(2)当
时,若能使销售总金额比涨价前增加,试设定
m
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-03 06:09:45
答案(点此获取答案解析)
同类题1
某小型服装厂生产一种风衣,日销售量
(件)与单价
(元)之间的关系为
,生产
件所需成本为
(元),其中
元,若要求每天获利不少于
元,则日销量
的取值范围是__________.
同类题2
经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-
|t-10|.
(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;
(2)求该种商品的日销售额y的最大值与最小值.
同类题3
在经济学中,函数
的边际函数为
,定义为
,某公司每月最多生产
台报警系统装置,生产
台的收入函数为
(单位元),其成本函数为
(单位元),利润等于收入与成本之差.
(1)求出利润函数
及其边际利润函数
.
(2)求出的利润函数
及其边际利润函数
是否具有相同的最大值.
(3)你认为本题中边际利润函数
最大值的实际意义.
同类题4
根据市场分析,某蔬菜加工点,当月产量为10吨至25吨时,月生产总成本
(万元)可以看出月产量
(吨)的二次函数,当月产量为10吨时,月生产成本为20万元,当月产量为15吨时,月生产总成本最低至17.5万元.
(I)写出月生产总成本
(万元)关于月产量
吨的函数关系;
(II)已知该产品销售价为每吨1.6万元,那么月产量为多少吨时,可获得最大利润,并求出最大利润.
同类题5
随着机构改革的深入,各单位要减员增效,一家公司现有职员
人(
),且
为偶数,每人每年可创利5万元,据评估,每裁员1人,留守职员每人每年多创利润0. 1万元,但公司要付下岗职员每人每年3万元的生活费.
(1)假设公司裁员
人,请写出公司获得的利益
关于
的解析式;
(2)公司正常的运转所需人数不得少于现有职员的
,为了获得最大效益,该公司应当裁员多少人.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题