刷题首页
题库
高中数学
题干
某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.
(1)问第几年开始获利;
(2)若干年后有两种处理方案:①年平均利润最大时,以26万元出售该船;②总纯收入获利最大时,以8万元出售该船.问哪种方案更合算.
上一题
下一题
0.99难度 解答题 更新时间:2010-12-02 03:18:37
答案(点此获取答案解析)
同类题1
某企业生产A、B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图(1);B产品的利润与投资的算术平方根成正比,其关系如图(2)(注:所示图中的横坐标表示投资金额,单位为万元)
(1)分别求出A、B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?
同类题2
据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本
(万元)可以看成月产量
(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本
(万元)关于月产量
(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?
同类题3
某商品在某月的30天内每件销售价格
(元)与时间
(天)的函数关系式是
,该商品的日销售量
(件)与时间
(天)的函数关系式是
,求这种商品的日销售金额的最大值,并指出日销售金额最大的是30天中的第几天.
同类题4
某商品每件成本为80元,售价为100元,每天售出100件。若售价降低
成(1成即为10%),售出商品的数量就增加
成,要求降价幅度不能导致亏本,记该商品一天营业额为
。
(1)求:该商品一天营业额
的表达式,并指出定义域;
(2)若要求该商品一天的营业额至少为10260元,求
的取值范围..
同类题5
有甲、乙两种商品,经营销售这两种产品所能获得的利润依次为
(万元)和
(万元),它们与投入资金
(万元)的关系有经验公式:
,
.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得最大利润是多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
分式型函数模型的应用