- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图所示表示甲同学从家出发到乙同学家经过的路程y(km)与时间x(min)的关系,下列结论正确的是( )


A.甲同学从家出发到乙同学家走了60min |
B.甲从家到公园的时间是30min |
C.甲从家到公园的速度比从公园到乙同学家的速度快 |
D.当![]() ![]() |
E.当![]() ![]() |
将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了获得最大利润,每个商品的售价应定为( )
A.95元 | B.100元 | C.105元 | D.110元 |
某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润
(单位:百万元)与营运年数
(
)满足二次函数关系,且
与
满足的二次函数的图象如图所示.若使每辆客车营运的年平均利润最大,则每辆客车应营运( )







A.3年 | B.4年 | C.5年 | D.6年 |
某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分, 先收取固定的制版费,再按印刷数量收取印刷费;乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量 x(千个)的函数关系图分别如图中甲、乙所示.

(l)甲厂的制版费为____千元,印刷费为平均每个____元,甲厂的费用yl与证书数量x之间的函数关系为__________,
(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个________元;
(3)当印制证书数量超过2干个时,求乙厂的总费用
与证书数量x之间的函数关系式为______;
(4)若该单位需印制证书数量为8干个,该单位应选择哪个厂更节省费用?请说明理由

(l)甲厂的制版费为____千元,印刷费为平均每个____元,甲厂的费用yl与证书数量x之间的函数关系为__________,
(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个________元;
(3)当印制证书数量超过2干个时,求乙厂的总费用

(4)若该单位需印制证书数量为8干个,该单位应选择哪个厂更节省费用?请说明理由
某人开汽车从A地出发,以60 km/h 的速度,经2 h到达B地,在B地停留1 h,则汽车离开A地的距离y(单位:km)是时间t(单位:h)的函数,该函数的解析式是________.
某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件________元.
某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4 000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是( )
A.2.4元 | B.3元 |
C.2.8元 | D.3.2元 |
某公司利用
线上、实体店线下销售产品
,产品
在上市
天内全部售完.据统计,线上日销售量
、线下日销售量
(单位:件)与上市时间
天的关系满足:
,产品
每件的销售利润为
(单位:元)(日销售量
线上日销售量
线下日销售量).
(1)设该公司产品
的日销售利润为
,写出
的函数解析式;
(2)产品
上市的哪几天给该公司带来的日销售利润不低于
元?















(1)设该公司产品



(2)产品


“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C(单位:万元)与安装的这种净水设备的占地面积x(单位:平方米)之间的函数关系是C(x)=
(x≥0,k为常数).记y为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.
(1)试解释C(0)的实际意义,并建立y关于x的函数关系式并化简;
(2)当x为多少平方米时,y取得最小值,最小值是多少万元?

(1)试解释C(0)的实际意义,并建立y关于x的函数关系式并化简;
(2)当x为多少平方米时,y取得最小值,最小值是多少万元?
将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个_________元.