- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产
万件,需另投入流动成本为
万元,且
,每件产品售价为10元.经市场分析,生产的产品当年能全部售完.
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式;
(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?



(1)写出年利润


(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?
如图所示的是自动通风设施
该设施的下部ABCD是等腰梯形,其中
米,高
米,
米
上部CmD是个半圆,固定点E为CD的中点
是由电脑控制其形状变化的三角通风窗
阴影部分均不通风
,MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆.

设MN与AB之间的距离为x米,试将三角通风窗
的通风面积
平方米
表示成关于x的函数
;
当MN与AB之间的距离为多少米时,三角通风窗
的通风面积最大?求出这个最大面积.
















若用模型
来描述汽车紧急刹车后滑行的距离
与刹车时的速度
的关系,而某种型号的汽车的速度为
时,紧急刹车后滑行的距离为
.在限速
的高速公路上,一辆这种型号的车紧急刹车后滑行的距离为
,问这辆车是否超速行驶?







如图所示,有一批材料可以建成长为30m的围墙,如果用该材料在墙角的地方围成一个矩形场地,中间用同样的材料隔成3个面积相等的矩形,则围成的矩形场地面积的最大值是______
.


将进货单价为6元的商品按10元一个销售时,每天可卖出100个
若这种商品的销售单价每涨1元,日销售量减少10个,为了获得最大利润,此商品的销售单价应为多少元?最大利润是多少元?

某商品在近30天内每件的销售价格
(单位:元)与销售时间
(单位:天)的函数关系为
,
,且该商品的日销售量Q(单位:件)与销售时间
(单位:天)的函数关系为
,则这种商品的日销售量金额最大的一天是30天中的第__________天.






某公司的新能源产品上市后在国内外同时销售,已知第一批产品上市销售40天内全部售完,该公司对这批产品上市后的国内外市场销售情况进行了跟踪调查,如图所示,其中图①中的折线表示的是国外市场的日销售量与上市时间的关系;图②中的抛物线表示的是国内市场的日销售量与上市时间的关系;下表表示的是产品广告费用、产品成本、产品销售价格与上市时间的关系.
图① 图②
(1)分别写出国外市场的日销售量
、国内市场的日销售量
与产品上市时间t的函数关系式;
(2)产品上市后的哪几天,这家公司的日销售利润超过260万元?
(日销售利润=(单件产品销售价-单件产品成本)×日销售量-当天广告费用,
)


| 第t天产品广告费用(单位:万元) | 每件产品成本(单位:万元) | 每件产品销售价格(单位:万元) |
![]() | ![]() | 3 | 6 |
![]() | 10 | 3 | 5 |
(1)分别写出国外市场的日销售量


(2)产品上市后的哪几天,这家公司的日销售利润超过260万元?
(日销售利润=(单件产品销售价-单件产品成本)×日销售量-当天广告费用,

某公司的新能源产品上市后在国内外同时销售,已知第一批产品上市销售40天内全部售完,该公司对这批产品上市后的国内外市场销售情况进行了跟踪调查,如图所示,其中图①中的折线表示的是国外市场的日销售量与上市时间的关系;图②中的抛物线表示的是国内市场的日销售量与上市时间的关系;下表表示的是产品广告费用、产品成本、产品销售价格与上市时间的关系.


(1)分别写出国外市场的日销售量
、国内市场的日销售量
与产品上市时间
的函数关系式;
(2)产品上市后的哪几天,这家公司的日销售利润超过260万元?
(日销售利润=(单件产品销售价-单件产品成本)×日销售量-当天广告费用,
)


(1)分别写出国外市场的日销售量



(2)产品上市后的哪几天,这家公司的日销售利润超过260万元?
(日销售利润=(单件产品销售价-单件产品成本)×日销售量-当天广告费用,

某商品在近30天内每件的销售价格P元和时间t(t∈N)的关系如图所示.

(1)请确定销售价格P(元)和时间t(天)的函数解析式;
(2)该商品的日销售量Q(件)与时间t(天)的关系是:Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)求该商品的日销售金额y(元)的最大值,并指出日销售金额最大的一天是30天中的哪一天?

(1)请确定销售价格P(元)和时间t(天)的函数解析式;
(2)该商品的日销售量Q(件)与时间t(天)的关系是:Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)求该商品的日销售金额y(元)的最大值,并指出日销售金额最大的一天是30天中的哪一天?
某商品上市30天内每件的销售价格
元与时间
天函数关系是
该商品的日销售量
件与时间
天函数关系是
.(1)求该商品上市第20天的日销售金额;
(2)求这个商品的日销售金额的最大值.






(2)求这个商品的日销售金额的最大值.